Identification of the Tetraspanin CD82 as a New Barrier to Xenotransplantation

被引:10
|
作者
Saleh, Soad M. [1 ]
Parhar, Ranjit S. [1 ]
Al-Hejailan, Reem S. [1 ]
Bakheet, Razan H. [1 ]
Khaleel, Hala S. [1 ]
Khalak, Hanif G. [2 ]
Halees, Anason S. [3 ]
Zaidi, Marya Z. [1 ]
Meyer, Brian F. [2 ]
Yung, Gisella P. [4 ]
Seebach, Joerg D. [4 ]
Conca, Walter [1 ,5 ,6 ]
Khabar, Khalid S. [3 ,6 ]
Collison, Kate S. [1 ]
Al-Mohanna, Futwan A. [1 ,6 ]
机构
[1] King Faisal Specialist Hosp & Res Ctr, Dept Cell Biol, Riyadh 11211, Saudi Arabia
[2] King Faisal Specialist Hosp & Res Ctr, Dept Genet, Riyadh 11211, Saudi Arabia
[3] King Faisal Specialist Hosp & Res Ctr, Mol BioMed Program, Riyadh 11211, Saudi Arabia
[4] Univ Hosp & Med Fac, CH-1211 Geneva 14, Switzerland
[5] King Faisal Specialist Hosp & Res Ctr, Dept Med, Riyadh 11211, Saudi Arabia
[6] Alfaisal Univ, Coll Med, Riyadh 11211, Saudi Arabia
来源
JOURNAL OF IMMUNOLOGY | 2013年 / 191卷 / 05期
关键词
DIFFERENTIATED THP-1 CELLS; HUMAN PROSTATE-CANCER; ENDOTHELIAL-CELLS; METASTASIS SUPPRESSION; NATURAL ANTIBODIES; T-LYMPHOCYTES; KNOCKOUT PIGS; UP-REGULATION; KAI1; GENE; ACTIVATION;
D O I
10.4049/jimmunol.1300601
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Significant immunological obstacles are to be negotiated before xenotransplantation becomes a clinical reality. An initial rejection of transplanted vascularized xenograft is attributed to Gal alpha 1,3Gal beta 1,4GlcNAc-R (Gal alpha 1,3-Gal)-dependent and -independent mechanisms. Hitherto, no receptor molecule has been identified that could account for Gal alpha 1,3-Gal-independent rejection. In this study, we identify the tetraspanin CD82 as a receptor molecule for the Gal alpha 1,3-Gal-independent mechanism. We demonstrate that, in contrast to human undifferentiated myeloid cell lines, differentiated cell lines are capable of recognizing xenogeneic porcine aortic endothelial cells in a calcium-dependent manner. Transcriptome-wide analysis to identify the differentially expressed transcripts in these cells revealed that the most likely candidate of the Gal alpha 1,3-Gal-independent recognition moiety is the tetraspanin CD82. Abs to CD82 inhibited the calcium response and the subsequent activation invoked by xenogeneic encounter. Our data identify CD82 on innate immune cells as a major "xenogenicity sensor" and open new avenues of intervention to making xenotransplantation a clinical reality.
引用
收藏
页码:2796 / 2805
页数:10
相关论文
共 50 条
  • [31] HTLV-1 biofilm polarization maintained by tetraspanin CD82 is required for efficient viral transmission
    Arone, Coline
    Martial, Samuel
    Burlaud-Gaillard, Julien
    Thoulouze, Maria-Isabel
    Roingeard, Philippe
    Dutartre, Helene
    Muriaux, Delphine
    MBIO, 2023, 14 (06):
  • [32] Cell boundary detection for quantitative studies of the role of tetraspanin CD82 in cell-cell adhesion
    Stroe, Paul
    Claridge, Ela
    Odintsova, Elena
    20TH CONFERENCE ON MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2016), 2016, 90 : 107 - 112
  • [33] Tetraspanin CD82 regulates Hematopoietic Stem and Progenitor Cell Quiescence through the modulation of TGFb signaling
    Pascetti, E.
    Floren, M.
    Saito-Reis, C.
    Gillette, J.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 271 - 271
  • [34] The Tetraspanin CD82 Regulates Hematopoietic Stem Cell Activation within the Bone Marrow Microenvironment.
    Reis, C. A. Saito
    Marjon, K. D.
    Pascetti, E. M.
    Karlen, K. L.
    Dodd, R. J.
    Termini, C. M.
    Gillette, J. M.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [35] Role of the metastasis suppressor tetraspanin CD82/KAI 1 in regulation of signalling in breast cancer cells
    Odintsova, E.
    Berditchevski, F.
    BREAST CANCER RESEARCH, 2006, 8 (Suppl 2) : S11 - S12
  • [36] Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to Candida albicans
    Tam, Jenny M.
    Reedy, Jennifer L.
    Lukason, Daniel P.
    Kuna, Sunnie G.
    Acharya, Mridu
    Khan, Nida S.
    Negoro, Paige E.
    Xu, Shuying
    Ward, Rebecca A.
    Feldman, Michael B.
    Dutko, Richard A.
    Jeffery, Jane B.
    Sokolovska, Anna
    Wivagg, Carl N.
    Lassen, Kara G.
    Le Naour, Francois
    Matzaraki, Vasiliki
    Garner, Ethan C.
    Xavier, Ramnik J.
    Kumar, Vinod
    van de Veerdonk, Frank L.
    Netea, Mihai G.
    Miranti, Cindy K.
    Mansour, Michael K.
    Vyas, Jatin M.
    JOURNAL OF IMMUNOLOGY, 2019, 202 (11): : 3256 - 3266
  • [37] The tetraspanin CD82 defines erythroid committment, regulates stem- and progenitor cell survival and mediates adhesion
    Burchert, A
    Denecke, B
    Haerle, T
    Neubauer, A
    BLOOD, 2004, 104 (11) : 125B - 126B
  • [38] Metastasis Suppressor Tetraspanin CD82/KAI1 Regulates Ubiquitylation of Epidermal Growth Factor Receptor
    Odintsova, Elena
    van Niel, Guillaume
    Conjeaud, Helene
    Raposo, Graca
    Iwamoto, Ryo
    Mekada, Eisuke
    Berditchevski, Fedor
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (36) : 26323 - 26334
  • [39] Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes
    Delaguillaumie, A
    Lagaudrière-Gesbert, C
    Popoff, MR
    Conjeaud, H
    JOURNAL OF CELL SCIENCE, 2002, 115 (02) : 433 - 443
  • [40] Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets
    Uchtmann, Kristen
    Park, Electa R.
    Bergsma, Alexis
    Segula, Justin
    Edick, Mathew J.
    Miranti, Cindy K.
    EXPERIMENTAL CELL RESEARCH, 2015, 339 (02) : 261 - 269