The Barut second-order equation: Lagrangian, dynamical invariants and interactions

被引:2
|
作者
Dvoeglazov, Valeri V. [1 ]
机构
[1] Univ Zacatecas, Suc UAZ, Zacatecas 98062, Mexico
关键词
Barut; electron; Lorentz group; dynamical invariants;
D O I
10.1007/s00006-008-0092-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The second-order equation in the (1/2, 0) circle plus (0,1 1/2) representation of the Lorentz group has been proposed by A. Barut in the 70s, ref. [1]. it permits to explain the mass splitting of leptons (e, mu, T). Recently, the interest has grown to this model (see, for instance, the papers by S. Kruglov [2] and J. P. Vigier et al. [3]). We continue the research deriving the equation from the first principles, finding dynamical invariants for this model, investigating the influence of potential interactions.
引用
收藏
页码:579 / 585
页数:7
相关论文
共 50 条
  • [1] The Barut Second-Order Equation: Lagrangian, Dynamical Invariants and Interactions
    Valeri V. Dvoeglazov
    Advances in Applied Clifford Algebras, 2008, 18 : 579 - 585
  • [2] The Barut second-order equation, dynamical invariants and interactions
    Dvoeglazov, VV
    VI MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS, 2005, 24 : 236 - 240
  • [3] Second-order dynamical systems of Lagrangian type with dissipation
    Mestdag, T.
    Sarlet, W.
    Crampin, M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S156 - S163
  • [4] The Quantization of a Fourth-Order Equation without a Second-Order Lagrangian
    M. C. Nucci
    P. G. L. Leach
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 485 - 490
  • [5] THE QUANTIZATION OF A FOURTH-ORDER EQUATION WITHOUT A SECOND-ORDER LAGRANGIAN
    Nucci, M. C.
    Leach, P. G. L.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (04) : 485 - 490
  • [6] Smooth dynamical solution for the damped second-order equation
    Claeyssen, JR
    Schuchman, V
    COMPUTATIONAL & APPLIED MATHEMATICS, 1998, 17 (02): : 121 - 134
  • [7] SECOND-ORDER INVARIANTS AND HOLOGRAPHY
    Luongo, Orlando
    Bonanno, Luca
    Iannone, Gerardo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2012, 21 (12):
  • [8] Dynamical behaviour of second-order rational fuzzy difference equation
    Zhang, Qianhong
    Luo, Zhenguo
    Liu, Jingzhong
    Shao, Yuanfu
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2015, 5 (04) : 336 - 353
  • [9] Dynamical Derivation of Eyring Equation and the Second-Order Kinetic Law
    Bonnet, L.
    Rayez, J-C
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (13) : 2355 - 2359
  • [10] EQUATION OF SECOND-ORDER
    GAULTIER, M
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (NR1): : 76 - 83