Facial Expression Classification Using Deep Convolutional Neural Network

被引:6
|
作者
Choi, In-kyu [1 ]
Ahn, Ha-eun [1 ]
Yoo, Jisang [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
关键词
Convolutional neural network; Facial expression; Data augmentation; Database; STIMULUS SET; VALIDATION; FACES; DATABASE;
D O I
10.5370/JEET.2018.13.1.485
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.
引用
下载
收藏
页码:485 / 492
页数:8
相关论文
共 50 条
  • [21] Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 732 - 735
  • [22] Mammogram density classification using deep convolutional neural network
    Nithya, R.
    Santhi, B.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (01):
  • [23] Lithological facies classification using deep convolutional neural network
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 216 - 228
  • [24] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [25] Dari Speech Classification Using Deep Convolutional Neural Network
    Dawodi, Mursal
    Baktash, Jawid Ahamd
    Wada, Tomohisa
    Alam, Najwa
    Joya, Mohammad Zarif
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 110 - 113
  • [26] The skin cancer classification using deep convolutional neural network
    Ulzii-Orshikh Dorj
    Keun-Kwang Lee
    Jae-Young Choi
    Malrey Lee
    Multimedia Tools and Applications, 2018, 77 : 9909 - 9924
  • [27] Plant species classification using deep convolutional neural network
    Dyrmann, Mads
    Karstoft, Henrik
    Midtiby, Henrik Skov
    BIOSYSTEMS ENGINEERING, 2016, 151 : 72 - 80
  • [28] Facial Ethnicity Classification with Deep Convolutional Neural Networks
    Wang, Wei
    He, Feixiang
    Zhao, Qijun
    BIOMETRIC RECOGNITION, 2016, 9967 : 176 - 185
  • [29] An accurate recognition of facial expression by extended wavelet deep convolutional neural network
    Arun Kumar Dubey
    Vanita Jain
    Multimedia Tools and Applications, 2022, 81 : 28295 - 28325
  • [30] An accurate recognition of facial expression by extended wavelet deep convolutional neural network
    Dubey, Arun Kumar
    Jain, Vanita
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28295 - 28325