Optimal design of periodic structures using evolutionary topology optimization

被引:154
|
作者
Huang, X. [1 ]
Xie, Y. M. [1 ]
机构
[1] RMIT Univ, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
Topology optimization; Periodic structure; Sandwich structure; Bi-directional evolutionary structural optimization (BESO);
D O I
10.1007/s00158-007-0196-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a method for topology optimization of periodic structures using the bi-directional evolutionary structural optimization (BESO) technique. To satisfy the periodic constraint, the designable domain is divided into a certain number of identical unit cells. The optimal topology of the unit cell is determined by gradually removing and adding material based on a sensitivity analysis. Sensitivity numbers that consider the periodic constraint for the repetitive elements are developed. To demonstrate the capability and effectiveness of the proposed approach, topology design problems of 2D and 3D periodic structures are investigated. The results indicate that the optimal topology depends, to a great extent, on the defined unit cells and on the relative strength of other non-designable part, such as the skins of sandwich structures.
引用
收藏
页码:597 / 606
页数:10
相关论文
共 50 条
  • [31] Evolutionary and GPU computing for topology optimization of structures
    Ram, Laxman
    Sharma, Deepak
    SWARM AND EVOLUTIONARY COMPUTATION, 2017, 35 : 1 - 13
  • [32] Eigenvalue topology optimization of periodic cellular structures
    Fu, Junjian
    Zhang, Yue
    Du, Yixian
    Gao, Liang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (03): : 73 - 81
  • [33] Multiobjective topology optimization for finite periodic structures
    Chen, Yuhang
    Zhou, Shiwei
    Li, Qing
    COMPUTERS & STRUCTURES, 2010, 88 (11-12) : 806 - 811
  • [34] Optimal structure design of vehicle components using topology design and optimization
    Yildiz, Ali Riza
    MATERIALPRUFUNG, 2008, 50 (04): : 224 - 228
  • [35] Optimal topology/actuator placement design of structures using SA
    Liu, XJ
    Begg, DW
    Matravers, DR
    JOURNAL OF AEROSPACE ENGINEERING, 1997, 10 (03) : 119 - 125
  • [36] Multiobjective optimal topology design of structures
    Chen, TY
    Wu, SC
    COMPUTATIONAL MECHANICS, 1998, 21 (06) : 483 - 492
  • [37] Multiobjective optimal topology design of structures
    Ting-Yu Chen
    Shyh-Chang Wu
    Computational Mechanics, 1998, 21 : 483 - 492
  • [38] Nonparametric design of nanoparticles with maximum scattering using evolutionary topology optimization
    Kaya, Mine
    Hajimirza, Shima
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 166
  • [39] The topology optimization using evolutionary algorithms
    Kokot, G
    Orantek, P
    IUTAM SYMPOSIUM ON EVOLUTIONARY METHODS IN MECHANICS, 2004, 117 : 173 - 186
  • [40] Shape preserving design of vibrating structures using topology optimization
    Mattias S. Castro
    Olavo M. Silva
    Arcanjo Lenzi
    Miguel M. Neves
    Structural and Multidisciplinary Optimization, 2018, 58 : 1109 - 1119