Video Anomaly Detection in Confined Areas

被引:4
|
作者
Varghese, Emmanu [1 ]
Mulerikkal, Jaison [1 ]
Mathew, Amitha [1 ]
机构
[1] Rajagiri Sch Engn & Technol, Rajagiri Valley, Kochi 682039, Kerala, India
关键词
Video anomaly detection; Dense sampling; Colour pattern; Gray scale value; Statistical methods;
D O I
10.1016/j.procs.2017.09.104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new supervised algorithm for detecting abnormal events in confined areas like ATM room, server room etc. In the training phase, algorithm learns the motion path and speed of objects in the video. In the testing phase, if any motion happens other than in the learned motion path or the speed of object has large variation from the learned speed then the algorithm alert it as abnormal event. The proposed method process video in groups of frames. The algorithm uses statistical functions to learn the motion path and speed of objects in a video. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:448 / 459
页数:12
相关论文
共 50 条
  • [31] Adaptive Sparse Representations for Video Anomaly Detection
    Mo, Xuan
    Monga, Vishal
    Bala, Raja
    Fan, Zhigang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (04) : 631 - 645
  • [32] Perceptual metric learning for video anomaly detection
    Ramachandra, Bharathkumar
    Jones, Michael
    Vatsavai, Ranga Raju
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [33] Spatiotemporal Representation Learning for Video Anomaly Detection
    Li, Zhaoyan
    Li, Yaoshun
    Gao, Zhisheng
    IEEE ACCESS, 2020, 8 (08): : 25531 - 25542
  • [34] AnomalyNet: An Anomaly Detection Network for Video Surveillance
    Zhou, Joey Tianyi
    Du, Jiawei
    Zhu, Hongyuan
    Peng, Xi
    Liu, Yong
    Goh, Rick Siow Mong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (10) : 2537 - 2550
  • [35] Perceptual metric learning for video anomaly detection
    Bharathkumar Ramachandra
    Michael Jones
    Ranga Raju Vatsavai
    Machine Vision and Applications, 2021, 32
  • [36] DISCRIMINATIVE CLIP MINING FOR VIDEO ANOMALY DETECTION
    Sun, Li
    Chen, Yanjun
    Luo, Wu
    Wu, Haiyan
    Zhang, Chongyang
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2121 - 2125
  • [37] Video anomaly detection based on scene classification
    Li, Hongjun
    Shen, Xulin
    Sun, Xiaohu
    Wang, Yunlong
    Li, Chaobo
    Chen, Junjie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45345 - 45365
  • [38] Deep Video Anomaly Detection: Opportunities and Challenges
    Ren, Jing
    Xia, Feng
    Liu, Yemeng
    Lee, Ivan
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 959 - 966
  • [39] An informative dual ForkNet for video anomaly detection
    Li, Hongjun
    Wang, Yunlong
    Wang, Yating
    Chen, Junjie
    NEURAL NETWORKS, 2024, 179
  • [40] CamNuvem: A Robbery Dataset for Video Anomaly Detection
    de Paula, Davi D.
    Salvadeo, Denis H. P.
    de Araujo, Darlan M. N.
    SENSORS, 2022, 22 (24)