Cholesky Factorization of the Generalized Symmetric k- Fibonacci Matrix

被引:1
|
作者
Kome, Cahit [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Dept Informat Technol, TR-50300 Nevsehir, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2022年 / 35卷 / 04期
关键词
Generalized k-Fibonacci matrix; Symmetric generalized k-Fibonacci matrix; Cholesky factorization; LINEAR ALGEBRA; SEQUENCE;
D O I
10.35378/gujs.838411
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Matrix methods are a useful tool while dealing with many problems stemming from linear recurrence relations. In this paper, we discuss factorizations and inverse factorizations of two kinds of generalized k - Fibonacci matrices. We derive some useful identities of the k - Fibonacci sequence. We investigate the Cholesky factorization of the generalized symmetric k - Fibonacci matrix by using these identities.
引用
收藏
页码:1585 / 1595
页数:11
相关论文
共 50 条
  • [31] A recursive formulation of Cholesky factorization of a matrix in packed storage
    Andersen, BS
    Wasniewski, J
    Gustavson, FG
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (02): : 214 - 244
  • [32] ON THE CHOLESKY FACTORIZATION OF THE GRAM MATRIX OF LOCALLY SUPPORTED FUNCTIONS
    GOODMAN, TNT
    MICCHELLI, CA
    RODRIGUEZ, G
    SEATZU, S
    BIT, 1995, 35 (02): : 233 - 257
  • [33] The generalized pascal matrix via the generalized fibonacci matrix and the generalized pell matrix
    Lee, Gwang-Yeon
    Cho, Seong-Hoon
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 479 - 491
  • [34] Cholesky Decomposition Rectification for Non-negative Matrix Factorization
    Yoshida, Tetsuya
    FOUNDATIONS OF INTELLIGENT SYSTEMS, 2011, 6804 : 214 - 219
  • [35] On the generalized Fibonacci matrix of order 2k sequence {Gn(2k)}
    Zhang, CH
    ARS COMBINATORIA, 2001, 59 : 215 - 224
  • [36] The generalized order-k Fibonacci-Pell sequence by matrix methods
    Kilic, Emrah
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 209 (02) : 133 - 145
  • [37] GENERALIZED POLYTOPIC MATRIX FACTORIZATION
    Tatli, Gokcan
    Erdogan, Alper T.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3235 - 3239
  • [38] Inversion of the generalized Fibonacci matrix by convolution
    Stanimirovic, Predrag
    Miladinovic, Marko
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (07) : 1519 - 1532
  • [39] On the generalized Fibonacci and Lucas matrix hybrinomials
    Kome, Sure
    Yazan, Sefa
    FILOMAT, 2024, 38 (28) : 9779 - 9794
  • [40] On the M-generalized Fibonacci matrix
    Liang, Fangchi
    Guo, Luobin
    Advances in Matrix Theory and Applications, 2006, : 315 - 318