Singularities of logarithmic foliations

被引:19
|
作者
Cukierman, F [1 ]
Soares, MG
Vainsencher, I
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] UFMG, Dept Matemat, BR-31270901 Belo Horizonte, MG, Brazil
关键词
holomorphic foliations; characteristic classes; excess intersection;
D O I
10.1112/S0010437X05001545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A logarithmic 1-form on CPn can be written as GRAPHICS with (F) over cap (i)=(Pi(m)(0) F-j)/F-i for some homogeneous polynomials F-i of degree d(i) and constants lambda(i) is an element of C* such that Sigma lambda(i)d(i)=0. For general F-i, lambda(i), the singularities of omega consist of a schematic union of the codimension 2 subvarieties F-i=F-j=0 together with, possibly, finitely many isolated points. This is the case when all F-i are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [31] Higher codimensional foliations with Kupka singularities
    Calvo-Andrade, O.
    Correa, M.
    Fernandez-Perez, A.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (03)
  • [32] The number of degenerate singularities of a family of foliations
    Vainsencher, I
    MATHEMATICAL RESEARCH LETTERS, 2004, 11 (04) : 443 - 451
  • [33] A complete stability theorem for foliations with singularities
    Mafra, A.
    Scardua, B.
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (13) : 2141 - 2144
  • [34] Foliations with isolated singularities on Hirzebruch surfaces
    Galindo, Carlos
    Monserrat, Francisco
    Olivares, Jorge
    FORUM MATHEMATICUM, 2021, 33 (06) : 1471 - 1486
  • [35] Degenerate singularities of one dimensional foliations
    Ferrer, Viviana
    Vainsencher, Israel
    COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (02) : 305 - 321
  • [36] Simplifying integration for logarithmic singularities
    Smith, RNL
    BOUNDARY ELEMENTS XVIII, 1996, : 233 - 240
  • [37] SCALING THEORY AND LOGARITHMIC SINGULARITIES
    NIGHTINGALE, MP
    HOOFT, AH
    PHYSICA, 1974, 77 (02): : 390 - 402
  • [38] Heights and metrics with logarithmic singularities
    Freixas i Montplet, Gerard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 627 : 97 - 153
  • [39] HOMOTOPY GROUPS OF GENERIC LEAVES OF LOGARITHMIC FOLIATIONS
    Rodriguez-Guzman, Diego
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (06) : 2811 - 2824
  • [40] Logarithmic models for non-dicritical foliations
    Cano, Felipe
    Corral, Nuria
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166