MEIR-KEELER TYPE CONTRACTIONS FOR TRIPLED FIXED POINTS

被引:19
|
作者
Aydi, Hassen [1 ]
Karapinar, Erdal [2 ]
Vetro, Calogero [3 ]
机构
[1] Univ Monastir, Inst Super Informat Mahdia, Mahdia 5121, Tunisia
[2] Atilim Univ 06836, Dept Math, Ankara, Turkey
[3] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
tripled fixed point theorems; Meir-Keeler type contractions; partially ordered sets; PARTIALLY ORDERED SETS; NONLINEAR CONTRACTIONS; METRIC-SPACES; THEOREMS;
D O I
10.1016/S0252-9602(12)60164-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction.
引用
收藏
页码:2119 / 2130
页数:12
相关论文
共 50 条
  • [21] A fixed point theorem for Meir-Keeler contractions in ordered metric spaces
    Harjani, Jackie
    Lopez, Belen
    Sadarangani, Kishin
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [22] A fixed point theorem for Meir-Keeler contractions in ordered metric spaces
    Jackie Harjani
    Belén López
    Kishin Sadarangani
    Fixed Point Theory and Applications, 2011
  • [23] MEIR-KEELER TYPE AND CARISTI TYPE FIXED POINT THEOREMS
    Pant, Abhijit
    Pant, R. P.
    Rakocevic, Vladimir
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (03) : 849 - 858
  • [24] Fixed point theorems of generalized cyclic orbital Meir-Keeler contractions
    Chen, Chi-Ming
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [25] Fixed point theorems of generalized cyclic orbital Meir-Keeler contractions
    Chi-Ming Chen
    Fixed Point Theory and Applications, 2013
  • [26] Caristi Type and Meir-Keeler Type Fixed Point Theorems
    Pant, Abhijit
    Pant, R. P.
    Joshi, M. C.
    FILOMAT, 2019, 33 (12) : 3711 - 3721
  • [27] Fixed-Point Results for Meir-Keeler Type Contractions in Partial Metric Spaces: A Survey
    Karapinar, Erdal
    Agarwal, Ravi P.
    Yesilkaya, Seher Sultan
    Wang, Chao
    MATHEMATICS, 2022, 10 (17)
  • [28] On cyclic Meir-Keeler contractions in metric spaces
    Piatek, Bozena
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 35 - 40
  • [30] (α - ψ) Meir-Keeler Contractions in Bipolar Metric Spaces
    Kumar, Manoj
    Kumar, Pankaj
    Ramaswamy, Rajagopalan
    Abdelnaby, Ola A. Ashour
    Elsonbaty, Amr
    Radenovic, Stojan
    MATHEMATICS, 2023, 11 (06)