MEIR-KEELER TYPE CONTRACTIONS FOR TRIPLED FIXED POINTS

被引:19
|
作者
Aydi, Hassen [1 ]
Karapinar, Erdal [2 ]
Vetro, Calogero [3 ]
机构
[1] Univ Monastir, Inst Super Informat Mahdia, Mahdia 5121, Tunisia
[2] Atilim Univ 06836, Dept Math, Ankara, Turkey
[3] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
tripled fixed point theorems; Meir-Keeler type contractions; partially ordered sets; PARTIALLY ORDERED SETS; NONLINEAR CONTRACTIONS; METRIC-SPACES; THEOREMS;
D O I
10.1016/S0252-9602(12)60164-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction.
引用
收藏
页码:2119 / 2130
页数:12
相关论文
共 50 条
  • [1] MEIR-KEELER TYPE CONTRACTIONS FOR TRIPLED FIXED POINTS
    Hassen Aydi
    Erdal Karapvnar
    Calogero Vetro
    Acta Mathematica Scientia, 2012, 32 (06) : 2119 - 2130
  • [2] Fixed points for asymptotic contractions of integral Meir-Keeler type
    Canzoneri, Elisa
    Vetro, Pasquale
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2012, 5 (02): : 126 - 132
  • [3] COINCIDENCES AND FIXED POINTS OF NEW MEIR-KEELER TYPE CONTRACTIONS AND APPLICATIONS
    Kumar, Ashish
    Singh, Shyam Lal
    Mishra, S. N.
    Milovanovic-Arandjelovic, Marina M.
    FIXED POINT THEORY, 2014, 15 (01): : 117 - 134
  • [4] Common fixed points of generalized Meir-Keeler α-contractions
    Deepesh Kumar Patel
    Thabet Abdeljawad
    Dhananjay Gopal
    Fixed Point Theory and Applications, 2013
  • [5] Common fixed points of generalized Meir-Keeler α-contractions
    Patel, Deepesh Kumar
    Abdeljawad, Thabet
    Gopal, Dhananjay
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [6] Common Fixed Points of Intuitionistic Fuzzy Maps for Meir-Keeler Type Contractions
    Kanwal, Shazia
    Azam, Akbar
    ADVANCES IN FUZZY SYSTEMS, 2018, 2018
  • [7] GENERALIZED MEIR-KEELER TYPE CONTRACTIONS AND DISCONTINUITY AT FIXED POINT
    Bisht, Ravindra K.
    Rakocevic, Vladimir
    FIXED POINT THEORY, 2018, 19 (01): : 57 - 64
  • [8] Best proximity points for cyclic Meir-Keeler contractions
    Di Bari, Cristina
    Suzuki, Tomonari
    Vetro, Calogero
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3790 - 3794
  • [9] GENERALIZED MEIR-KEELER TYPE CONTRACTIONS AND DISCONTINUITY AT FIXED POINT II
    Pant, Abhijit
    Pant, R. P.
    Rakocevic, Vladimir
    Bisht, R. K.
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1501 - 1507
  • [10] FIXED POINT THEOREMS FOR MEIR-KEELER TYPE CONTRACTIONS IN METRIC SPACES
    Abtahi, Mortaza
    FIXED POINT THEORY, 2016, 17 (02): : 225 - 236