Effect of porosity and temperature on thermal conductivity of jennite: A molecular dynamics study

被引:20
|
作者
Hong, Song-Nam [1 ]
Yu, Chol-Jun [1 ]
Hwang, Un-Song [1 ]
Kim, Chung-Hyok [1 ]
Ri, Byong-Hyok [2 ]
机构
[1] Kim Il Sung Univ, Fac Mat Sci, Chair Computat Mat Design CMD, Taesong Dist, Pyongyang, North Korea
[2] Changhun Kumsu Agcy New Technol Exchange, Mangyongdae Dist, Pyongyang, North Korea
关键词
Jennite; Calcium Silicate Hydrate (C-S-H); Porous material; Thermal conductivity; Molecular dynamics; C-S-H; CALCIUM-SILICATE-HYDRATE; MECHANICAL-PROPERTIES; IRREVERSIBLE-PROCESSES; CRYSTAL-STRUCTURE; FORCE-FIELDS; CONCRETE; TOBERMORITE; SPECTROSCOPY; SIMULATIONS;
D O I
10.1016/j.matchemphys.2020.123146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite growing interest of cement materials in design and construction of green buildings, their thermal properties are not well understood at atomic scale. In this work, we reported the thermal conductivity of porous jennite, the major component of cement paste, and its porosity and temperature dependences, using molecular dynamics simulations with ClayFF force field. With molecular modeling for the porous jennite with different porosities by removing atoms within the sphere with a certain radius, we mostly applied the non-equilibrium Miiller-Plathe method to the porous jennite models, using the sufficiently extended simulation boxes along the heat flux direction and divided into numbers of plane slices. Our calculations revealed that the volumetric thermal conductivity of porous jennite decreases from 1.141 to 0.144 W/m.K as increasing the porosity from 0 to 72% at room temperature, which follows the empirical coherent potential model when the pore is filled with air. Moreover, as temperature increases, their thermal conductivities were observed to increase first and gradually decrease after certain temperature. We compared the calculation data with our measurement and other available experiments, confirming reasonable agreement between our calculation and experiment.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Effect of alkyl functionalization on thermal conductivity of graphene oxide nanosheets: a molecular dynamics study
    Aref, Amir Hossein
    Erfan-Niya, Hamid
    Entezami, Ali Akbar
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (14) : 6824 - 6835
  • [42] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
    Xu, Run-Feng
    Han, Kui
    Li, Hai-Peng
    CHINESE PHYSICS B, 2018, 27 (02)
  • [43] Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study
    Zhang, Jianwei
    He, Xiaodong
    Yang, Lin
    Wu, Guoqiang
    Sha, Jianjun
    Hou, Chengyu
    Yin, Cunlu
    Pan, Acheng
    Li, Zhongzhou
    Liu, Yubai
    SENSORS, 2013, 13 (07): : 9388 - 9395
  • [44] Effect of equilateral triangle vacancy defect on the thermal conductivity and thermal rectification of graphene: A molecular dynamics study
    Yang, P. (yangpingdm@ujs.edu.cn), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (07): : 1 - 3
  • [45] THERMAL CONDUCTIVITY .9. EXPERIMENTAL INVESTIGATION OF EFFECT OF POROSITY ON THERMAL CONDUCTIVITY
    FRANCL, J
    KINGERY, WD
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1954, 37 (02) : 99 - 107
  • [46] Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron
    Sun, Yandong
    Zhou, Yanguang
    Han, Jian
    Hu, Ming
    Xu, Ben
    Liu, Wei
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (04)
  • [47] Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron
    Sun, Yandong
    Zhou, Yanguang
    Han, Jian
    Hu, Ming
    Xu, Ben
    Liu, Wei
    Journal of Applied Physics, 2020, 127 (04):
  • [48] Thermal conductivity and temperature in solid argon by nonequilibrium molecular dynamics simulations
    Heino, P
    PHYSICAL REVIEW B, 2005, 71 (14)
  • [49] Thermal conductivity of silica glass at high temperature by molecular dynamics simulation
    Takase, K
    Akiyama, I
    Ohtori, N
    MATERIALS TRANSACTIONS JIM, 1999, 40 (11): : 1258 - 1261
  • [50] A Molecular Dynamics Study on Thermal Conductivity of Armchair Graphene Nanoribbon
    Khan, Asir Intisar
    Navid, Ishtiaque Ahmed
    Hossain, Fahim Ferdous
    Noshin, Maliha
    Subrina, Samia
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2775 - 2778