Adaptive finite elements for elastic bodies in contact

被引:46
|
作者
Carstensen, C
Scherf, O
Wriggers, P
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] Inst Baumech & Numer Math, D-30167 Hannover, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1999年 / 20卷 / 05期
关键词
contact of bodies; a posteriori error estimate; variational inequality; regularization; penalty method;
D O I
10.1137/S1064827595295350
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To avoid interpenetration of matter under the small strain assumption, the linear contact condition is frequently applied where the distance of bodies is controlled only along a certain direction. The standard direction is the normal on the surface where interpenetration might occur. In this paper we allow other directions as well. We address questions such as the correct mathematical model, existence of solutions, the penalty method for regularization of the variational inequality, finite element discretization, and a priori and a posteriori error estimates, but exclude the error of penalization. The computable upper error bound leads to a criterion for automatic mesh-refinements within a finite element method. Numerical simulations of the Hertzian contact problem and a supported cantilever beam are included.
引用
收藏
页码:1605 / 1626
页数:22
相关论文
共 50 条
  • [21] NON-HERTZIAN NORMAL CONTACT OF ELASTIC BODY MODEL BY FINITE ELEMENTS
    Enescu, Ioan
    Vlase, Sorin
    Lepadatescu, Badea
    Purcarea, Ramona
    Dumitrascu, Adela
    ANNALS OF DAAAM FOR 2008 & PROCEEDINGS OF THE 19TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON NEXT GENERATION OF INTELLIGENT SYSTEMS AND SOLUTIONS, 2008, : 479 - 480
  • [22] NUMERICAL-METHODS OF SOLVING CONTACT PROBLEM FOR FINITE LINEARLY AND NONLINEARLY ELASTIC BODIES
    KRAVCHUK, AS
    VASILEV, VA
    SOVIET APPLIED MECHANICS, 1980, 16 (06): : 462 - 467
  • [23] CONTACT STRESSES IN 2 ELASTIC BODIES (ELASTIC BODIES ARE RECTANGULAR-PLATES)
    MINAKUCHI, Y
    SAWA, T
    YOSHIMINE, K
    KOIZUMI, T
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1983, 26 (213): : 340 - 346
  • [24] Contact between nonlinearly elastic bodies
    Habeck, Daniel
    Schuricht, Friedemann
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 1239 - 1266
  • [25] FORCED VIBRATIONS OF ELASTIC BODIES IN CONTACT
    ANDERSON, GL
    JOURNAL OF SOUND AND VIBRATION, 1971, 16 (04) : 533 - &
  • [26] DEFORMATION AND ADHESION OF ELASTIC BODIES IN CONTACT
    ATTARD, P
    PARKER, JL
    PHYSICAL REVIEW A, 1992, 46 (12): : 7959 - 7971
  • [27] THE FRICTIONLESS CONTACT OF CRACKED ELASTIC BODIES
    THEOCARIS, PS
    BARDZOKAS, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (02): : 89 - 102
  • [28] COMPLIANCE OF COATED ELASTIC BODIES IN CONTACT
    KEER, LM
    KIM, SH
    EBERHARDT, AW
    VITHOONTIEN, V
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1991, 27 (06) : 681 - 698
  • [29] ON CONTACT PROBLEM OF LAYERED ELASTIC BODIES
    WU, TS
    CHIU, YP
    QUARTERLY OF APPLIED MATHEMATICS, 1967, 25 (03) : 233 - &
  • [30] Capillary adhesion in a contact of elastic bodies
    Goryacheva, I.G.
    Makhovskaya, Yu.Yu.
    Prikladnaya Matematika i Mekhanika, 1999, 63 (01): : 128 - 137