THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

被引:1
|
作者
Pongkitiwanichakul, Peera [1 ,2 ]
Chandran, Benjamin D. G. [1 ,2 ]
Karpen, Judith T. [3 ]
DeVore, C. Richard [4 ]
机构
[1] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[2] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] USN, Res Lab, Washington, DC 20375 USA
来源
ASTROPHYSICAL JOURNAL | 2012年 / 757卷 / 01期
基金
美国国家科学基金会;
关键词
plasmas; Sun: corona; Sun: flares; waves; PARTICLE-ACCELERATION; DYNAMICS;
D O I
10.1088/0004-637X/757/1/72
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] PROPAGATION OF THE FAST MAGNETOSONIC WAVE THROUGH THE GENERALIZED BUDDEN BARRIER
    Kazakov, Ye. O.
    Pavlenko, I. V.
    Girka, I. O.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2010, (04): : 90 - 93
  • [32] CYCLOTRON INTERACTION BETWEEN AN ELECTRON BEAM AND FAST MAGNETOSONIC WAVE
    ERMAKOV, AI
    NAZAROV, NI
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1970, 14 (09): : 1180 - &
  • [33] Determining the Wave Vector Direction of Equatorial Fast Magnetosonic Waves
    Boardsen, Scott A.
    Hospodarsky, George B.
    Min, Kyungguk
    Averkamp, Terrance F.
    Bounds, Scott R.
    Kletzing, Craig A.
    Pfaff, Robert F.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (16) : 7951 - 7959
  • [34] Alfven wave phase mixing as a source of fast magnetosonic waves
    Nakariakov, VM
    Roberts, B
    Murawski, K
    SOLAR PHYSICS, 1997, 175 (01) : 93 - 105
  • [35] Fast particles in drift wave turbulence
    Weiland, J.
    Rafiq, T.
    Schuster, E.
    PHYSICS OF PLASMAS, 2023, 30 (04)
  • [36] "Fast" Nonlinear Evolution in Wave Turbulence
    Annenkov, S. Y.
    Shrira, V. I.
    PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [37] Nonlinear interaction of the fast magnetosonic wave with the extraordinary mode laser and ion-scaled turbulence generation in the magnetized plasma
    Kumar, Narender
    Singh, Indraj
    Goyal, R.
    Uma, R.
    Sharma, R. P.
    OPTIK, 2023, 277
  • [38] FAST MAGNETOSONIC WAVE STRUCTURE MEASUREMENTS IN THE ALCATOR-A ICRF EXPERIMENT
    GAUDREAU, MPJ
    SANSONE, M
    BLACKWELL, BD
    KNOWLTON, F
    LAVOIE, D
    HOLTJER, C
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 905 - 905
  • [39] Alfvén Wave Phase Mixing as a Source of Fast Magnetosonic Waves
    V. M. Nakariakov
    B. Roberts
    K. Murawski
    Solar Physics, 1997, 175 : 93 - 105
  • [40] FAST-MAGNETOSONIC-WAVE HEATING OF THE CONCEPTUAL NUWMAK TOKAMAK REACTOR
    SCHARER, JE
    BEYER, JB
    BLACKFIELD, DT
    MAU, TK
    NUCLEAR FUSION, 1979, 19 (09) : 1171 - 1192