Optimal feedback quantizers for n-dimensional systems with discrete-valued input

被引:2
|
作者
Minami, Yuki [1 ,2 ]
Azuma, Shun-ichi [1 ]
Sugie, Toshiharu [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Kyoto 6110011, Japan
[2] Maizuru Natl Coll Technol, Dept Control Engn, Maizuru, Kyoto 6258511, Japan
关键词
n-Dimensional system; Discrete-valued input; Feedback quantizer; Halftoning; MODEL; STABILIZATION; QUANTIZATION; STABILITY; ROESSER;
D O I
10.1016/j.nahs.2009.06.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses an optimal design problem of feedback quantizers for a class of n-dimensional (n-D) systems whose input signals are restricted to discrete-valued ones. First, for an arbitrary given quantizer, we analyze the maximum discrepancy between outputs of both the discrete-valued input n-D system connected with the quantizer and its corresponding continuous-valued input one. Based on this result, an optimal feedback quantizer which minimizes the discrepancy is derived in a closed form. A numerical example is given to demonstrate its effectiveness even in the case of coarse quantization. Second, we apply the optimal feedback quantizer to generate binary halftone images to verify its applicability and potential to real problems. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 50 条
  • [21] On Discrete-valued Modeling of Nonholonomic Mobile Robot Systems
    Kita, Takuto
    Ishikawa, Masato
    Osuka, Koichi
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [22] A filled function method for optimal discrete-valued control problems
    Wu, C. Z.
    Teo, K. L.
    Rehbock, V.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 44 (02) : 213 - 225
  • [23] Improvement of steady-state performance for discrete-valued input control with an integrator utilizing feedback control of integrated value of input
    Tanemura, Masaya
    Chida, Yuichi
    Terada, Shohei
    Iida, Tomoharu
    ASIAN JOURNAL OF CONTROL, 2023, 25 (02) : 783 - 793
  • [24] A filled function method for optimal discrete-valued control problems
    C. Z. Wu
    K. L. Teo
    V. Rehbock
    Journal of Global Optimization, 2009, 44 : 213 - 225
  • [25] Towards global solutions of optimal discrete-valued control?problems
    Woon, Siew Fang
    Rehbock, Volker
    Loxton, Ryan
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2012, 33 (05): : 576 - 594
  • [26] SOFT-FEEDBACK OMP FOR THE RECOVERY OF DISCRETE-VALUED SPARSE SIGNALS
    Sparrer, Susanne
    Fischer, Robert F. H.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1461 - 1465
  • [27] THE LYAPUNOV EQUATION FOR N-DIMENSIONAL DISCRETE-SYSTEMS
    AGATHOKLIS, P
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (04): : 448 - 451
  • [28] Modeling and realization of n-dimensional linear discrete systems
    Miri, SA
    Aplevich, JD
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1998, 9 (03) : 241 - 253
  • [29] Modeling and Realization of n-Dimensional Linear Discrete Systems
    S. A. Miri
    J. D. Aplevich
    Multidimensional Systems and Signal Processing, 1998, 9 : 241 - 253
  • [30] Global optimization for a special class of discrete-valued optimal control problems
    Lee, HWJ
    Ali, MM
    Wong, KH
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2004, 11 (06): : 735 - 756