Anticipatory systems near bifurcation points

被引:0
|
作者
Beda, Peter B. [1 ]
机构
[1] HAS BUTE, Res Grp Dynam Machines & Vehicles, H-1111 Budapest, Hungary
来源
COMPUTING ANTICIPATORY SYSTEMS | 2006年 / 839卷
关键词
bifurcation; inverted pendulum; recursive and anticipatory systems;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bifurcation in the sense of applied mathematics happens when the system is on the boundary of one set of equivalent states. Generally a system undergoing bifurcation is in a critical state. Any small change in the parameters may result essentially different behaviors. This phenomenon is called the structural instability and is of great interest in (Lyapunov) stability investigations of engineering problems. In numerical simulations such property may cause several problems. We concentrate on the differences in the qualitative behavior of the solutions for recursive and anticipatory systems generated by the same mechanical model. The results show how the nature of solution depends on the type of bifurcation.
引用
收藏
页码:610 / 617
页数:8
相关论文
共 50 条
  • [41] Bifurcation points of nonlinear operators
    Yang, Zhilin
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2000, 17 (02): : 109 - 112
  • [42] On bifurcation points of a complex polynomial
    Jelonek, Z
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1361 - 1367
  • [43] Parametrization of a Solution at Bifurcation Points
    Krasnikov, S. D.
    Kuznetsov, E. B.
    DIFFERENTIAL EQUATIONS, 2009, 45 (08) : 1218 - 1222
  • [44] OPTIMIZATION OF HOPF BIFURCATION POINTS
    Boulle, Nicolas
    Farrell, Patrick E.
    Rognes, Marie E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : B390 - B411
  • [45] Parametrization of a solution at bifurcation points
    S. D. Krasnikov
    E. B. Kuznetsov
    Differential Equations, 2009, 45 : 1218 - 1222
  • [46] THE CONLEY INDEX AND BIFURCATION POINTS
    FU, XC
    XU, KH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (12) : 1137 - 1142
  • [47] GENERIC BIFURCATION OF PERIODIC POINTS
    MEYER, KR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (01) : 95 - &
  • [48] BIFURCATION POINTS OF HAMMERSTEIN EQUATIONS
    APPELL, J
    ZABREJKO, PP
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 16 (01) : 15 - 37
  • [49] On the determination of bifurcation and limit points
    Franchi, A
    Genna, F
    Corradi, L
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1998, 124 (08): : 866 - 874
  • [50] BIFURCATION POINTS AND HAMMERSTEIN EQUATIONS
    ZABREIKO, PP
    POVOLOTS.AI
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (03): : 496 - &