Likelihood estimation of tropospheric duct parameters from horizontal propagation measurements

被引:31
|
作者
Rogers, LT
机构
[1] Ocean and Atmosph. Sciences Division, Nav. Command, Contr. Ocean S., Res., Devmt., Test and Eval. Div., San Diego, CA
[2] Ocean and Atmosph. Sciences Division, Nav. Command, Contr. Ocean S., Res., Test and Evaluation Division, 53170 Woodward Road, San Diego
关键词
D O I
10.1029/96RS02904
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A Bayesian estimation technique using an embedded electromagnetic parabolic equation model is implemented to solve the inverse problem of determining the atmospheric refractivity from measurements of beyond-line-of-sight radio-frequency propagation factors. The inverted refractivity structure is associated with the trapping layer that can be formed by the capping inversion of the stable marine boundary layer. Why this inverse problem is of interest is established by describing the refractivity structure associated with the stable marine boundary layer in the context of its effect on horizontal propagation and then describing the difficulty of obtaining representative estimates of the tropospheric refractivity structure using existing sensing methods. The implementation is then described. A three-parameter model of the marine boundary layer is used; two of the three parameters are inverted, while the third is assumed to be a random variable. The inversion method is applied to radio data from the Variability Of Coastal Atmospheric Refractivity Experiment (VOCAR). A matrix of propagation factors corresponding to the two parameters to be inverted is calculated for the path geometry and the frequencies of VOCAR. Parameter likelihoods are determined for the entire parameter space, and mean estimates of refractivity parameters are computed from the distributions. The parameter estimates are compared with values obtained from radiosondes launched during VOCAR. The remotely sensed refractivity parameters for multiple-frequency sensing show good agreement with directly sensed observations.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [41] Evaporation Duct Refractivity Inversion from EM Propagation Measurements and NAVSLaM Predictions
    Wang, Qi
    Burkholder, R. J.
    Yardim, C.
    Pozderac, J.
    Christman, A.
    Fernando, H. J. S.
    Wang, Qing
    Creegan, E. D.
    2016 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2016, : 117 - 118
  • [42] Estimation of Evaporation Duct and Surface-Based Duct Parameters from a Combined Refractivity Model
    Wang, Qi
    Burkholder, R. J.
    Yardim, C.
    Wang, Qing
    Yamaguchi, R.
    Franklyn, K.
    Ortiz-Suslow, D.
    Creegan, E.
    Fernando, J.
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 879 - 880
  • [43] Estimation of tropospheric parameters with GNSS smartphones in a differential approach
    Stauffer, R.
    Hohensinn, R.
    Pinzon, I. D. Herrera
    Moeller, G.
    Pan, Y.
    Klopotek, G.
    Soja, B.
    Brockmann, E.
    Rothacher, M.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (09)
  • [44] A Framework for Developing Algorithms for Estimating Propagation Parameters from Measurements
    Sayeed, Akbar
    Vouras, Peter
    Gentile, Camillo
    Weiss, Alec
    Quimby, Jeanne
    Cheng, Zihang
    Modad, Bassel
    Zhang, Yuning
    Anjinappa, Chethan
    Erden, Fatih
    Ozdemir, Ozgur
    Mueller, Robert
    Dupleich, Diego
    Niu, Han
    Michelson, David
    Hughes, Aidan
    2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [45] Propagation-separation approach for local likelihood estimation
    Polzehl, J
    Spokoiny, V
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (03) : 335 - 362
  • [46] Motor parameters estimation from industrial electrical measurements
    Angelosante, Daniele
    Fagiano, Lorenzo
    Grasso, Fabio
    Ragaini, Enrico
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1006 - 1010
  • [47] Propagation-Separation Approach for Local Likelihood Estimation
    Jörg Polzehl
    Vladimir Spokoiny
    Probability Theory and Related Fields, 2006, 135 : 335 - 362
  • [48] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [49] Dedicated Neural Networks algorithms for direct estimation of tropospheric ozone from satellite measurements
    Sellitto, Pasquale
    Burini, Alessandro
    Del Frate, Fabio
    Solimini, Domenico
    Casadio, Stefano
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1685 - 1688
  • [50] Estimation of the rocks statistical parameters from traveltime measurements
    A. Kaslilar
    Yu.A. Kravtsov
    S.A. Shapiro
    S. Buske
    R. Giese
    Th. Dickmann
    Studia Geophysica et Geodaetica, 2006, 50 : 325 - 336