A NEW FRACTIONAL DERIVATIVE MODEL FOR THE ANOMALOUS DIFFUSION PROBLEM

被引:9
|
作者
Chen, Zhanqing [1 ,2 ]
Qiu, Peitao [1 ,3 ,4 ]
Yang, Xiao-Jun [1 ]
Feng, Yiying [2 ]
Liu, Jiangen
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Jiangsu, Peoples R China
[3] Xuzhou Univ Technol, Sch Civil Engn, Xuzhou, Jiangsu, Peoples R China
[4] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
来源
THERMAL SCIENCE | 2019年 / 23卷
关键词
fractional derivative; exponential decay kernel; anomalous diffusion; analytical solution; Laplace transform;
D O I
10.2298/TSCI180912253C
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, a new fractional derivative within the exponential decay kernel is addressed for the first time. A new anomalous diffusion model is proposed to describe the heat-conduction problem. With the use of the Laplace transform, the analytical solution is discussed in detail. The presented result is as an accurate and efficient approach proposed for the heat-conduction problem in the complex phenomena.
引用
收藏
页码:S1005 / S1011
页数:7
相关论文
共 50 条
  • [1] Anomalous diffusion with ballistic scaling: A new fractional derivative
    Kelly, James F.
    Li, Cheng-Gang
    Meerschaert, Mark M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 161 - 178
  • [2] An Inverse Source Problem for Anomalous Diffusion Equation with Generalized Fractional Derivative in Time
    Asim Ilyas
    Salman A. Malik
    [J]. Acta Applicandae Mathematicae, 2022, 181
  • [3] An Inverse Source Problem for Anomalous Diffusion Equation with Generalized Fractional Derivative in Time
    Ilyas, Asim
    Malik, Salman A.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2022, 181 (01)
  • [4] Fractional and fractal derivative models for transient anomalous diffusion: Model comparison
    Sun, HongGuang
    Li, Zhipeng
    Zhang, Yong
    Chen, Wen
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 346 - 353
  • [5] Fractional Cauchy Problem with Applications to Anomalous Diffusion
    Popescu, E.
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 983 - 989
  • [6] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    [J]. PHYSICA A, 1994, 211 (01): : 13 - 24
  • [7] A New Model of the Problem with a Fractional Derivative Along the Trajectory of Motion
    Lapin, A.
    Yanbarisov, R.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) : 2194 - 2205
  • [8] A New Model of the Problem with a Fractional Derivative Along the Trajectory of Motion
    A. Lapin
    R. Yanbarisov
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 2194 - 2205
  • [9] The Role of Fractional Time-Derivative Operators on Anomalous Diffusion
    Tateishi, Angel A.
    Ribeiro, Haroldo V.
    Lenzi, Ervin K.
    [J]. FRONTIERS IN PHYSICS, 2017, 5
  • [10] Inverse Problem for a Two-Dimensional Anomalous Diffusion Equation with a Fractional Derivative of the Riemann-Liouville Type
    Brociek, Rafal
    Wajda, Agata
    Slota, Damian
    [J]. ENERGIES, 2021, 14 (11)