Computer Modeling of Granite Magma Diapirism in the Earth's Crust

被引:6
|
作者
Polyansky, O. P. [1 ]
Korobeynikov, S. N. [2 ,3 ]
Babichev, A. V. [1 ]
Reverdatto, V. V. [1 ]
Sverdlova, V. G. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Geol & Mineral, Novosibirsk, Russia
[2] Russian Acad Sci, Siberian Branch, MA Lavrentev Hydrodynam Inst, Novosibirsk, Russia
[3] Novosibirsk State Univ, Novosibirsk, Russia
关键词
DEFORMATION; GENERATION; SIMULATION; EVOLUTION;
D O I
10.1134/S1028334X09080315
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A new point of view describing processes of partial melting and development of gravitational instability in a thickening crust with increased thickness of the granite layer is suggested. Numeral experiments support the following main conclusions. The critical volume of partially melted material should be formed for the beginning of flotation in a gravitational field. Due to model estimations, the height of the melting area in the granite crust should be not less than 6-7 km. A mushroom-shaped form of the floating body was observed in all models regardless of the thermal source size (fixed or variable width): the high temperature channel (magma leader) and head body of the diapir are formed. The height of diapir floating depends on rheological features of the surrounding crust: 10 times increase in the yield strength (from 1 to 10 MPa) while temperature decrease confines the possible level of rising to a depth of 15-16 km. An elevation of about 750 m is formed in the day surface relief above the axis part of the diapir.
引用
收藏
页码:1380 / 1384
页数:5
相关论文
共 50 条
  • [21] Interaction of Kimberlite Magma with Diamonds Upon Uplift from the Upper Mantle to the Earth's Crust
    Litvin, Yu. A.
    Kuzyura, A. V.
    Varlamov, D. A.
    Bovkun, A. V.
    Spivak, A. V.
    Garanin, V. K.
    GEOCHEMISTRY INTERNATIONAL, 2018, 56 (09) : 881 - 900
  • [22] Dendritic crystallization in hydrous basaltic magmas controls magma mobility within the Earth’s crust
    Fabio Arzilli
    Margherita Polacci
    Giuseppe La Spina
    Nolwenn Le Gall
    Edward W. Llewellin
    Richard A. Brooker
    Rafael Torres-Orozco
    Danilo Di Genova
    David A. Neave
    Margaret E. Hartley
    Heidy M. Mader
    Daniele Giordano
    Robert Atwood
    Peter D. Lee
    Florian Heidelbach
    Mike R. Burton
    Nature Communications, 13
  • [23] Interaction of Kimberlite Magma with Diamonds Upon Uplift from the Upper Mantle to the Earth’s Crust
    Yu. A. Litvin
    A. V. Kuzyura
    D. A. Varlamov
    A. V. Bovkun
    A. V. Spivak
    V. K. Garanin
    Geochemistry International, 2018, 56 : 881 - 900
  • [24] The Earth's Crust
    不详
    GEOGRAPHY, 1951, 36 : 280 - 280
  • [26] Experience of Modeling the Seismotectonic Flow of the Earth’s Crust in Central Asia
    I. U. Atabekov
    Izvestiya, Physics of the Solid Earth, 2021, 57 : 110 - 119
  • [27] Seismo-gravity modeling of the Okhotsk Sea earth's crust
    Neprochnov, YP
    Semenov, GA
    Hao, TY
    OKEANOLOGIYA, 1999, 39 (04): : 622 - 627
  • [28] Experience of Modeling the Seismotectonic Flow of the Earth's Crust in Central Asia
    Atabekov, I. U.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2021, 57 (01) : 110 - 119
  • [29] Physicochemical Computer Simulation of Hydrogeochemical, Ecological, and Hydrothermal Processes in the Earth’s Crust
    B. N. Ryzhenko
    Geochemistry International, 2020, 58 : 1391 - 1404
  • [30] Physicochemical Computer Simulation of Hydrogeochemical, Ecological, and Hydrothermal Processes in the Earth's Crust
    Ryzhenko, B. N.
    GEOCHEMISTRY INTERNATIONAL, 2020, 58 (13) : 1391 - 1404