Molecular dynamics study on perfect and defective graphene/calcium-silicate-hydrate composites under tensile loading

被引:11
|
作者
Guo, Xiaoxuan [1 ]
Xin, Hao [1 ]
Li, Jian [1 ]
Wang, Zhihua [2 ]
Li, Zhiqiang [3 ]
机构
[1] Taiyuan Univ Technol, Inst Appl Mech, Taiyuan, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Natl Demonstrat Ctr Expt Mech Educ, Taiyuan, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Shanxi Key Lab Mat Strength & Struct Impact, Coll Mech & Vehicle Engn, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics; mechanical properties; calcium-silicate-hydrate; graphene; defect; HEXAGONAL BORON-NITRIDE; C-S-H; MECHANICAL-PROPERTIES; CRACK; NANOSHEETS; PRISTINE; BEHAVIOR;
D O I
10.1080/08927022.2019.1632449
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic models of graphene/calcium-silicate-hydrate (G/C-S-H) are constructed by embedding perfect or defective graphene in molecular structures of amorphous C-S-H. Molecular dynamics (MD) simulation is utilised to study mechanical properties of the G/C-S-H and the enhancing effect of perfect and defective graphene is compared. The effects of temperature and strain rate on perfect and defective G/C-S-H are also investigated and compared. The results from present simulations show that (i) the defective graphene has better enhancing effect in C-S-H than perfect one and it grows with the increase of defect sizes; (ii) the tensile strength of G/C-S-H decreases with the increase of temperature and the defective G/C-S-H is more susceptible to temperature than the perfect one; (iii) the ultimate strength and the failure strain increase significantly with the increase of strain rate and the effects of strain rate on perfect and defective G/C-S-H are similar. These findings provide important atomic insights for understanding the mechanical behaviours of G/C-S-H composite.
引用
收藏
页码:1481 / 1487
页数:7
相关论文
共 50 条
  • [31] Stress relaxation properties of calcium silicate hydrate: a molecular dynamics study
    Geng, Zhicheng
    Tang, Shengwen
    Wang, Yang
    A, Hubao
    He, Zhen
    Wu, Kai
    Wang, Lei
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2024, 25 (02): : 97 - 115
  • [32] Molecular dynamics study on axial mechanical properties of calcium silicate hydrate
    Huang, Jiangzhang
    Fan, Yue
    Ouyang, Xiaowei
    MATERIALS RESEARCH EXPRESS, 2020, 7 (08)
  • [33] Molecular Dynamics Simulations of Graphene Pull-Out from Calcium Silicate Hydrate
    Li, Chen Yang
    Chen, Shu Jian
    Lu, Ye
    Duan, Wen Hui
    CONCREEP 10: MECHANICS AND PHYSICS OF CREEP, SHRINKAGE, AND DURABILITY OF CONCRETE AND CONCRETE STRUCTURES, 2015, : 913 - 918
  • [34] Gypsum under tensile loading: A molecular dynamics study
    Sarkar, Prodip Kumar
    Mitra, Nilanjan
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 201 : 1 - 10
  • [35] Molecular dynamics simulation of coupled water and ion adsorption in the nano-pores of a realistic calcium-silicate-hydrate gel
    Tu, Yongming
    Yu, Qian
    Wen, Rongjia
    Shi, Pan
    Yuan, Lei
    Ji, Yuanhui
    Sas, Gabriel
    Elfgren, Lennart
    Construction and Building Materials, 2021, 299
  • [36] Thermal conductivity and tensile response of defective graphene: A molecular dynamics study
    Mortazavi, Bohayra
    Ahzi, Said
    CARBON, 2013, 63 : 460 - 470
  • [37] Molecular dynamics simulation of coupled water and ion adsorption in the nano-pores of a realistic calcium-silicate-hydrate gel
    Tu, Yongming
    Yu, Qian
    Wen, Rongjia
    Shi, Pan
    Yuan, Lei
    Ji, Yuanhui
    Sas, Gabriel
    Elfgren, Lennart
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 299
  • [38] Mechanical properties of calcium silicate hydrate under uniaxial and biaxial strain conditions: a molecular dynamics study
    Tu, Yongming
    Shi, Pan
    Liu, Dongyun
    Wen, Rongjia
    Yu, Qian
    Sas, Gabriel
    Elfgren, Lennart
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (02) : 1156 - 1166
  • [39] Coarse-grained molecular dynamics study on submicron structuring of calcium silicate hydrate with enhanced tensile modulus and strength
    Yu, Zechuan
    Zhuo, Jingbo
    Qin, Renyuan
    Liu, Tiejun
    Zhou, Ao
    Tang, Jinhui
    JOURNAL OF BUILDING ENGINEERING, 2024, 82
  • [40] Influence of initial tensile stress on mechanical properties of calcium silicate hydrate under various strain rates by molecular dynamics simulation
    Liang, Yuanzhi
    Zhou, Jikai
    CHEMICAL PHYSICS LETTERS, 2023, 810