Amenable groups, mean topological dimension and subshifts

被引:0
|
作者
Krieger, Fabrice
机构
[1] Univ Strasbourg 1, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
minimal dynamical system; mean topological dimension; subshift; amenable group; Jaworski Theorem;
D O I
10.1007/s10711-006-9071-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an infinite countable residually finite amenable group. In this paper we construct a continuous action of G on a compact metrisable space X such that the dynamical system (X, G) cannot be embedded in the G-shift on [0,1](G). This result generalizes a construction due to E. Lindenstrauss and B. Weiss (Mean topological dimension, Israel J. Math. 115 (2000), 1-24) for G = Z.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 50 条
  • [41] Topological entropy of sets of generic points for actions of amenable groups
    Dongmei Zheng
    Ercai Chen
    Science China Mathematics, 2018, 61 (05) : 869 - 880
  • [42] Topological entropy of sets of generic points for actions of amenable groups
    Dongmei Zheng
    Ercai Chen
    Science China Mathematics, 2018, 61 : 869 - 880
  • [43] Dimension and entropy in compact topological groups
    Dikranjan, Dikran
    Sanchis, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (02) : 337 - 366
  • [44] Mean dimension and a non-embeddable example for amenable group actions
    Jin, Lei
    Park, Kyewon Koh
    Qiao, Yixiao
    FUNDAMENTA MATHEMATICAE, 2022, 257 (01) : 19 - 38
  • [45] Mean topological dimension for random bundle transformations
    Ma, Xianfeng
    Yang, Junqi
    Chen, Ercai
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1020 - 1041
  • [46] On the computability of the topological entropy of subshifts
    Simonsen, JG
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2006, 8 (01): : 83 - 95
  • [47] Recurrence dimension in Toeplitz subshifts
    Kurka, P
    Maass, A
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 165 - 175
  • [48] Density and invariant means in left amenable locally compact topological groups
    Salec, A. Bagheri
    TOPOLOGY AND ITS APPLICATIONS, 2017, 230 : 122 - 130
  • [49] The Topological Entropy of Stable Sets for Bi-orderable Amenable Groups
    Jie Li
    Tao Yu
    Journal of Dynamics and Differential Equations, 2021, 33 : 849 - 862
  • [50] The Topological Entropy of Stable Sets for Bi-orderable Amenable Groups
    Li, Jie
    Yu, Tao
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (02) : 849 - 862