Efficient Quasi-Monte Carlo Methods for Multiple Integrals in Option Pricing

被引:3
|
作者
Todorov, V. [1 ,2 ]
Dimov, I. [2 ]
Dimitrov, Yu. [3 ]
机构
[1] Bulgarian Acad Sci, Dept Informat Modeling, Inst Math & Informat, Acad G Bonchev Str,Bl 8, BU-1113 Sofia, Bulgaria
[2] Bulgarian Acad Sci, Dept Parallel Algorithms, Inst Informat & Commun Technol, Acad G Bonchev Str,Bl 25A, BU-1113 Sofia, Bulgaria
[3] Univ Forestry, Dept Math & Phys, Sofia 1756, Bulgaria
关键词
ERROR ANALYSIS; VALUATION;
D O I
10.1063/1.5064950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we consider European style options with an exponential payoff function. The problem is transformed to evaluation of multidimensional integrals of the exponential function over the unit cube where the values of the parameters involved in the formula depend the values of the European options. We compare the performance of quasi-Monte Carlo methods based on lattice rules for multiple integrals up to 30 dimensions. The performance of a lattice rule depends on the choice of the generator vectors. When the integrand is sufficiently regular the lattice rules outperform not only the standard Monte Carlo methods, but also other types of methods using low discrepancy sequences. We consider "rank 1" rules whose lattices have a a single generator vector. The advantages and disadvantages of the different quasi-Monte Carlo methods for multidimensional integrals related to evaluation of European options are studied in the paper.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Quasi-Monte Carlo simulation for American option sensitivities
    Xiang, Jiangming
    Wang, Xiaoqun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 413
  • [22] Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction
    Wang, Xiaoqun
    Tan, Ken Seng
    MANAGEMENT SCIENCE, 2013, 59 (02) : 376 - 389
  • [23] GOOD PATH GENERATION METHODS IN QUASI-MONTE CARLO FOR PRICING FINANCIAL DERIVATIVES
    He, Zhijian
    Wang, Xiaoqun
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : B171 - B197
  • [24] A second-order discretization with Malliavin weight and Quasi-Monte Carlo method for option pricing
    Yamada, Toshihiro
    Yamamoto, Kenta
    QUANTITATIVE FINANCE, 2020, 20 (11) : 1825 - 1837
  • [25] EFFICIENT IMPORTANCE SAMPLING IN QUASI-MONTE CARLO METHODS FOR COMPUTATIONAL FINANCE
    Zhang, Chaojun
    Wang, Xiaoqun
    He, Zhijian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : B1 - B29
  • [26] Pricing of Arithmetic Average Asian Option by Combining Variance Reduction and Quasi-Monte Carlo Method
    Xu, Lingling
    Zhang, Hongjie
    Wang, Fu Lee
    MATHEMATICS, 2023, 11 (03)
  • [27] Efficient randomized quasi-Monte Carlo methods for portfolio market risk
    Sak, Halis
    Basoglu, Ismail
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 76 : 87 - 94
  • [28] AN ACCELERATING QUASI-MONTE CARLO METHOD FOR OPTION PRICING UNDER THE GENERALIZED HYPERBOLIC LEVY PROCESS
    Imai, Junichi
    Tan, Ken Seng
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2282 - 2302
  • [29] Quasi-Monte Carlo methods with applications in finance
    L'Ecuyer, Pierre
    FINANCE AND STOCHASTICS, 2009, 13 (03) : 307 - 349
  • [30] Quasi-Monte Carlo methods in computer graphics
    Keller, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 109 - 112