Hermite-Hadamard inequality for fuzzy integrals

被引:23
|
作者
Caballero, J. [1 ]
Sadarangani, K. [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Matemat, Las Palmas Gran Canaria 35017, Spain
关键词
Hermite-Hadamard inequality; Sugeno integral; Convex function; CONTINUITY;
D O I
10.1016/j.amc.2009.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a Hermite-Hadamard type inequality for fuzzy integrals. Some examples are given to illustrate the results. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2134 / 2138
页数:5
相关论文
共 50 条
  • [31] New extensions of the Hermite-Hadamard inequality
    Guzman, Paulo M.
    Valdes, Juan E. Naples
    Stojiljkovic, Vuk
    CONTRIBUTIONS TO MATHEMATICS, 2023, 7 : 60 - 66
  • [32] A Sharp Multidimensional Hermite-Hadamard Inequality
    Larson, Simon
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 1297 - 1312
  • [33] The converse of the Hermite-Hadamard inequality on simplices
    Mitroi, Flavia-Corina
    Symeonidis, Eleutherius
    EXPOSITIONES MATHEMATICAE, 2012, 30 (04) : 389 - 396
  • [34] EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS
    Bakula, M. Klaricic
    Pecaric, J.
    Peric, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 899 - 921
  • [35] MAJORIZATION AND REFINEMENTS OF HERMITE-HADAMARD INEQUALITY
    Niezgoda, Marek
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 137 - 148
  • [36] HERMITE-HADAMARD INEQUALITY FOR A FRUSTUM OF A SIMPLEX
    Nowicka, Monika
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1319 - 1325
  • [37] Hermite-Hadamard Inequality on Time Scales
    Cristian Dinu
    Journal of Inequalities and Applications, 2008
  • [38] Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals
    Chen, Feixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 121 - 128
  • [39] Generalization of Hermite-Hadamard Inequalities Involving Hadamard Fractional Integrals
    Zhang, Zhi
    Wei, Wei
    Wang, JinRong
    FILOMAT, 2015, 29 (07) : 1515 - 1524
  • [40] THE EQUIVALENCE OF CHEBYSHEV'S INEQUALITY TO THE HERMITE-HADAMARD INEQUALITY
    Niculescu, Constantin P.
    Pecaric, Josip
    MATHEMATICAL REPORTS, 2010, 12 (02): : 145 - 156