Elements of an Improved Model of Debris-flow Motion

被引:0
|
作者
Iverson, Richard M. [1 ]
机构
[1] US Geol Survey, Cascades Volcano Observ, Vancouver, WA 98683 USA
来源
POWDERS AND GRAINS 2009 | 2009年 / 1145卷
关键词
debris flow; landslide; granular; mixture; pore pressure; dilatancy; soil mechanics; mathematical model; RUNOUT;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [31] Debris-flow impact, vulnerability, and response
    Santi, P. M.
    Hewitt, K.
    VanDine, D. F.
    Cruz, E. Barillas
    [J]. NATURAL HAZARDS, 2011, 56 (01) : 371 - 402
  • [32] Debris-flow susceptibility of upland catchments
    Mélanie Bertrand
    Frédéric Liébault
    Hervé Piégay
    [J]. Natural Hazards, 2013, 67 : 497 - 511
  • [33] Debris-flow of Zelongnong Ravine in Tibet
    ZHANG Jinshan1
    [J]. Journal of Mountain Science, 2011, 8 (04) : 535 - 543
  • [34] An overview of debris-flow mathematical modelling
    German Trujillo-Vela, Mario
    Mariano Ramos-Canon, Alfonso
    Alberto Escobar-Vargas, Jorge
    Andres Galindo-Torres, Sergio
    [J]. EARTH-SCIENCE REVIEWS, 2022, 232
  • [35] CLUSTERING ANALYSIS OF DEBRIS-FLOW STREAMS
    Yuan-Fan TSAI
    Huai-Kuang TSAI
    Cheng-Yan KAO
    [J]. International Journal of Sediment Research, 2004, (01) : 37 - 46
  • [36] Debris-flow of Zelongnong Ravine in Tibet
    Zhang Jinshan
    Shen Xingju
    [J]. JOURNAL OF MOUNTAIN SCIENCE, 2011, 8 (04) : 535 - 543
  • [37] Influence of rheology on debris-flow simulation
    Arattano, M.
    Franzi, L.
    Marchi, L.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2006, 6 (04) : 519 - 528
  • [38] Debris-flow susceptibility of upland catchments
    Bertrand, Melanie
    Liebault, Frederic
    Piegay, Herve
    [J]. NATURAL HAZARDS, 2013, 67 (02) : 497 - 511
  • [39] Parameters governing debris-flow initiation
    Klubertanz, G
    Laloui, L
    Vulliet, L
    [J]. DEBRIS-FLOW HAZARDS MITIGATION: MECHANICS, PREDICTION, AND ASSESSMENT, 2000, : 73 - 79
  • [40] An empirical model calculating the breach parameters of landslide and debris-flow dam
    Liu, Jian-Kang
    Cheng, Zun-Lan
    Wu, Ji-Shan
    [J]. Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition), 2013, 45 (SUPPL2): : 84 - 89