Approximate maximum likelihood source separation using the natural gradient

被引:0
|
作者
Choi, S [1 ]
Cichocki, A
Zhang, LQ
Amari, S
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
[2] RIKEN, BSI, Brain Style Informat Syst Res Grp, Wako, Saitama 3510198, Japan
关键词
independent component analysis; maximum likelihood estimation; natural gradient; source separation; overdetermined mixtures;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses a maximum likelihood method for source separation in the case of overdetermined mixtures corrupted by additive white Gaussian noise. We consider an approximate likelihood which is based on the Laplace approximation and develop a natural gradient adaptation algorithm to find a local maximum of the corresponding approximate likelihood. We present a detailed mathematical derivation of the algorithm using the Lie group invariance. Useful behavior of the algorithm is verified by numerical experiments.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [41] Binaural source separation based on spatial cues and maximum likelihood model adaptation
    Abdipour, Roohollah
    Akbari, Ahmad
    Rahmani, Mohsen
    Nasersharif, Babak
    DIGITAL SIGNAL PROCESSING, 2015, 36 : 174 - 183
  • [42] Near field source separation improvement through unconditional maximum likelihood estimator
    Bonilla-Hernandez, Dario
    Covarrubias-Rosales, David H.
    Arceo-Olague, Jose G.
    IEEE Latin America Transactions, 2006, 4 (06) : 403 - 408
  • [43] ONLINE SPEECH SOURCE SEPARATION BASED ON MAXIMUM LIKELIHOOD OF LOCAL GAUSSIAN MODELING
    Togami, Masahito
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 213 - 216
  • [44] Maximum likelihood blind source separation: A context-sensitive generalization of ICA
    Pearlmutter, BA
    Parra, LC
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 613 - 619
  • [45] Natural gradient multichannel blind deconvolution and source separation using causal FIR filters
    Douglas, SC
    Sawada, H
    Makino, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 477 - 480
  • [46] A Modified Natural Gradient Algorithm for Blind Source Separation Using Generalized Constant Modulus
    Gu, Fanglin
    Zhang, Hang
    Zhang, Jiang
    Zhu, Desheng
    Luo, Pan
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 663 - 666
  • [47] Using piecewise linear nonlinearities in the natural gradient and fastICA algorithms for blind source separation
    Chao, Jih-Cheng
    Douglas, Scott C.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1813 - +
  • [48] Approximate maximum likelihood estimation of the Bingham distribution
    Bee, Marco
    Benedetti, Roberto
    Espa, Giuseppe
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 108 : 84 - 96
  • [49] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [50] Exact and approximate maximum likelihood localization algorithms
    Chan, YT
    Hang, HYC
    Ching, PC
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2006, 55 (01) : 10 - 16