MAPPINGS RELATED TO EXTREMAL FUNCTIONS FOR P-CAPACITY

被引:3
|
作者
Romanov, Alexandr Sergeevich [1 ,2 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
关键词
Sobolev spaces; capacity; extremal functions; LENGTH;
D O I
10.33048/semi.2019.16.090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the Euclidean plane, we consider the class of mappings, whose coordinate functions are extremal functions for p-capacity special type condensers.
引用
收藏
页码:1295 / 1311
页数:17
相关论文
共 50 条
  • [31] The Hadamard variational formula and the Minkowski problem for p-capacity
    Colesanti, A.
    Nystrom, K.
    Salani, P.
    Xiao, J.
    Yang, D.
    Zhang, G.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1511 - 1588
  • [32] The Discrete Orlicz-Minkowski Problem for p-Capacity
    Lewen Ji
    Zhihui Yang
    Acta Mathematica Scientia, 2022, 42 : 1403 - 1413
  • [33] RIESZ POTENTIALS, K,P-CAPACITY, AND P-MODULES
    WALLIN, H
    MICHIGAN MATHEMATICAL JOURNAL, 1971, 18 (03) : 257 - &
  • [34] The Discrete Orlicz-Minkowski Problem for p-Capacity
    Ji, Lewen
    Yang, Zhihui
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1403 - 1413
  • [35] On p-modulus and p-capacity equalities in metric measure spaces
    Qi, WR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2005, 36 (08): : 451 - 466
  • [36] ABOUT THE EQUALITY BETWEEN THE P-MODULE AND THE P-CAPACITY IN RN
    CARAMAN, P
    LECTURE NOTES IN MATHEMATICS, 1983, 1039 : 32 - 83
  • [37] The Brunn-Minkowski inequality for p-capacity of convex bodies
    Colesanti, A
    Salani, P
    MATHEMATISCHE ANNALEN, 2003, 327 (03) : 459 - 479
  • [38] The Brunn-Minkowski inequality for p-capacity of convex bodies
    Andrea Colesanti
    Paolo Salani
    Mathematische Annalen, 2003, 327 : 459 - 479
  • [39] A flow to the Orlicz-Minkowski-type problem of p-capacity
    Sheng, Li
    Yang, Jin
    ADVANCES IN APPLIED MATHEMATICS, 2024, 155
  • [40] On coincidence of p-module of a family of curves and p-capacity on the Carnot group
    Markina, I
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (01) : 143 - 160