Efficient compression of hyperspectral images by grouping around lines

被引:0
|
作者
Gladkova, I. [1 ]
Nalli, N. [2 ]
Wolf, W. [2 ]
Zhou, L. [2 ]
Goldberg, M. [3 ]
Roytman, L. [1 ]
机构
[1] CUNY City Coll, 138th St & Convent Ave, New York, NY 10031 USA
[2] QSS Group Inc, NOAA NESDIS, Camp Springs, MD 20746 USA
[3] ORA NOAA NESDI, E RA, Camp Springs, MD USA
来源
INFORMATION OPTICS | 2006年 / 860卷
关键词
compression; clustering; subspaces; least squares; hyperspectral infrared; satellite remote sensing; AIRS; GOES-R;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a new lossless algorithm for compression of the signals from advanced hyperspectral infrared sensors onboard sun- and geo-synchronous environmental satellites. At each stage, our compression algorithm achieves an efficient grouping of channel data points around a relatively small number of I-dimensional lines in a large dimensional data space. The parametrization of these lines is very efficient, which leads to efficient descriptions of data points via adaptive clustering. Using one full day's worth (24 h) of global hyperspectral data obtained by the AQUA-EOS Atmospheric Infrared Sounder (AIRS), the mean ratio of compression attainable by the method is shown to be similar or equal to 3.7 to 1.
引用
收藏
页码:321 / +
页数:2
相关论文
共 50 条
  • [31] Compression of hyperspectral images at low bit rates
    Baek, N
    Choe, J
    Lee, C
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3555 - 3557
  • [32] Compression of Hyperspectral Images Containing a Subpixel Target
    Huber-Lerner, Merav
    Hadar, Ofer
    Rotman, Stanley R.
    Huber-Shalem, Revital
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2246 - 2255
  • [33] Dimension selective tensor compression of hyperspectral images
    Rahimi, Mahdi Salmani
    Sodagari, Shabnam
    Avanaki, Alireza Nasiri
    2008 ANNUAL IEEE STUDENT PAPER CONFERENCE, 2008, : 60 - 63
  • [34] Compression of hyperspectral images with pre-emphasis
    Lee, C
    Choi, E
    2004 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2004, : 653 - 656
  • [35] Clustered DPCM for the lossless compression of hyperspectral images
    Mielikainen, J
    Toivanen, P
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (12): : 2943 - 2946
  • [36] Lossless compression of hyperspectral images based on contents
    Tang, Yi
    Xin, Qin
    Li, Gang
    Wan, Jian-Wei
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2012, 20 (03): : 668 - 674
  • [37] Leveraging Seed Generation for Efficient Hardware Acceleration of Lossless Compression of Remotely Sensed Hyperspectral Images
    Altamimi, Amal
    Ben Youssef, Belgacem
    ELECTRONICS, 2024, 13 (11)
  • [38] Efficient Semantic Segmentation with Hyperspectral Images
    Pena, Fernando
    Vidal Aguilar, Pilar
    Suarez Gracia, Dario
    Murillo, Ana C.
    ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2023, 589 : 187 - 198
  • [39] Preprocessing and compression of Hyperspectral images captured onboard UAVs
    Herrero, Rolando
    Cadirola, Martin
    Ingle, Vinay K.
    UNMANNED/UNATTENDED SENSORS AND SENSOR NETWORKS XI; AND ADVANCED FREE-SPACE OPTICAL COMMUNICATION TECHNIQUES AND APPLICATIONS, 2015, 9647
  • [40] TENSOR COMPLETION FOR ON-BOARD COMPRESSION OF HYPERSPECTRAL IMAGES
    Li, Nan
    Li, Baoxin
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 517 - 520