Efficient compression of hyperspectral images by grouping around lines

被引:0
|
作者
Gladkova, I. [1 ]
Nalli, N. [2 ]
Wolf, W. [2 ]
Zhou, L. [2 ]
Goldberg, M. [3 ]
Roytman, L. [1 ]
机构
[1] CUNY City Coll, 138th St & Convent Ave, New York, NY 10031 USA
[2] QSS Group Inc, NOAA NESDIS, Camp Springs, MD 20746 USA
[3] ORA NOAA NESDI, E RA, Camp Springs, MD USA
来源
INFORMATION OPTICS | 2006年 / 860卷
关键词
compression; clustering; subspaces; least squares; hyperspectral infrared; satellite remote sensing; AIRS; GOES-R;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a new lossless algorithm for compression of the signals from advanced hyperspectral infrared sensors onboard sun- and geo-synchronous environmental satellites. At each stage, our compression algorithm achieves an efficient grouping of channel data points around a relatively small number of I-dimensional lines in a large dimensional data space. The parametrization of these lines is very efficient, which leads to efficient descriptions of data points via adaptive clustering. Using one full day's worth (24 h) of global hyperspectral data obtained by the AQUA-EOS Atmospheric Infrared Sounder (AIRS), the mean ratio of compression attainable by the method is shown to be similar or equal to 3.7 to 1.
引用
收藏
页码:321 / +
页数:2
相关论文
共 50 条
  • [1] Distributed compression for hyperspectral images
    Yang, Xinfeng
    Liu, Yuanchao
    Nian, Yongjian
    Teng, Shuhua
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2015, 44 (06): : 1950 - 1955
  • [2] Efficient lossy compression implementations of hyperspectral images: tools, hardware platforms and comparisons
    Garcia, Aday
    Santos, Lucana
    Lopez, Sebastian
    Callico, Gustavo M.
    Lopez, Jose F.
    Sarmiento, Roberto
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [3] An efficient reordering prediction-based lossless compression algorithm for hyperspectral images
    Zhang, Jing
    Liu, Guizhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (02) : 283 - 287
  • [4] An Efficient Compression Method of Hyperspectral Images Based on Compressed Sensing and Joint Optimization
    Luo, Jiqiang
    Xu, Tingfa
    Pan, Teng
    Han, Xiaolin
    Sun, Weidong
    INTEGRATED FERROELECTRICS, 2020, 208 (01) : 194 - 205
  • [5] Compression Of Hyperspectral Images: A Comparative Study
    Parlak, Cevahir
    Bilgin, Gokhan
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 200 - 203
  • [6] Effects of Compression on the Classification of Hyperspectral Images
    Choi, Euisun
    Lee, Sangwook
    Lee, Chulhee
    NEW ASPECTS OF SYSTEMS, PTS I AND II, 2008, : 541 - +
  • [7] Methods of grouping similar images for compression coding
    Nielsen, C
    Li, XB
    Abma, K
    Vision '05: Proceedings of the 2005 International Conference on Computer Vision, 2005, : 93 - 99
  • [8] Lossless compression methods for hyperspectral images
    Kubasova, O
    Toivanen, P
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 803 - 806
  • [9] Compression technique for plume hyperspectral images
    Feather, BK
    Fulkerson, SA
    Jones, JH
    Reed, RA
    Simmons, MA
    Swann, DG
    Taylor, WE
    Bernstein, LS
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, 5806 : 66 - 77
  • [10] Multiband and Lossless Compression of Hyperspectral Images
    Pizzolante, Raffaele
    Carpentieri, Bruno
    ALGORITHMS, 2016, 9 (01)