Recognizing small-circuit structure in two-qubit operators

被引:43
|
作者
Shende, VV [1 ]
Bullock, SS
Markov, IL
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Natl Inst Stand & Technol, Math & Computat Sci Div, Gaithersburg, MD 20899 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.012310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple quantum circuit. Specifically, we describe formulas, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-NOT (CNOT) gates and all other gates being one-qubit gates. We give an algorithm for synthesizing two-qubit circuits with an optimal number of CNOT gates and illustrate it on operators appearing in quantum algorithms by Deutsch-Josza, Shor, and Grover. In another application, our explicit numerical tests allow timing a given Hamiltonian to compute a CNOT modulo one-qubit gate, when this is possible.
引用
收藏
页码:012310 / 1
页数:5
相关论文
共 50 条
  • [1] Comment on "Universal quantum circuit for two-qubit transformations with three controlled-NOT gates" and "Recognizing small-circuit structure in two-qubit operators"
    Coffey, Mark W.
    Deiotte, Ron
    Semi, Torey
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [2] Two-Qubit Operators in No-Splitting Theorems
    Kumar, B. Shravan
    Balakrishnan, S.
    [J]. FOUNDATIONS OF PHYSICS, 2022, 52 (03)
  • [3] Two-Qubit Circuit Depth and the Monodromy Polytope
    Peterson, Eric C.
    Crooks, Gavin E.
    Smith, Robert S.
    [J]. QUANTUM, 2020, 4
  • [4] Two-Qubit Operators in No-Splitting Theorems
    B. Shravan Kumar
    S. Balakrishnan
    [J]. Foundations of Physics, 2022, 52
  • [5] Exact two-qubit universal quantum circuit
    Zhang, J
    Vala, J
    Sastry, S
    Whaley, KB
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (02)
  • [6] Finding small two-qubit circuits
    Shende, VV
    Markov, IL
    Bullock, SS
    [J]. QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 348 - 359
  • [7] Mapping two-qubit operators onto projective geometries
    Rau, A. R. P.
    [J]. PHYSICAL REVIEW A, 2009, 79 (04):
  • [8] Quantum circuits for incompletely specified two-qubit operators
    Shende, VV
    Markov, IL
    [J]. QUANTUM INFORMATION & COMPUTATION, 2005, 5 (01) : 49 - 57
  • [9] Single and two-qubit dynamics in circuit QED architectures
    Migliore, R.
    Messina, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 159 (1): : 101 - 111
  • [10] Single and two-qubit dynamics in circuit QED architectures
    R. Migliore
    A. Messina
    [J]. The European Physical Journal Special Topics, 2008, 159 : 101 - 111