Quasi-exact solutions of the dissipative Kuramoto-Sivashinsky equation

被引:31
|
作者
Kudryashov, Nikolay A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Dept Appl Math, Moscow 115409, Russia
关键词
Kuramoto-Sivasinsky equation; Exact solution; Quasi-exact solution; SOLITARY WAVE SOLUTIONS; MODIFIED KUDRYASHOV METHOD; NONLINEAR EVOLUTION; (G'/G)-EXPANSION METHOD; PERIODIC-SOLUTIONS; SIMPLEST EQUATION; TANH METHOD;
D O I
10.1016/j.amc.2013.03.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dissipative Kuramoto-Sivashinsky equation is studied. It is shown that this equation does not pass the Painleve test and as consequence this equation is not integrable. Quasi-exact solution of the dissipative Kuramoto-Sivashinsky equation is given. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:9213 / 9218
页数:6
相关论文
共 50 条
  • [41] An analytic study of compacton solutions for variants of Kuramoto-Sivashinsky equation
    Wazwaz, AM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) : 571 - 585
  • [42] A note on the nonexistence of monotonic steady solutions of the Kuramoto-Sivashinsky equation
    Ishimura N.
    Nakamura M.
    [J]. Annali dell’Università di Ferrara, 2000, 46 (1): : 175 - 180
  • [43] Mean solutions for the Kuramoto-Sivashinsky equation with incoming boundary conditions
    Kitahara, Y
    Okamura, M
    [J]. PHYSICAL REVIEW E, 2004, 70 (05): : 056210 - 1
  • [44] Adaptive stabilization of the Kuramoto-Sivashinsky equation
    Kobayashi, T
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (03) : 175 - 180
  • [45] ON THE BIFURCATION PHENOMENA OF THE KURAMOTO-SIVASHINSKY EQUATION
    Feudel, Fred
    Feudel, Ulrike
    Brandenburg, Axel
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1299 - 1303
  • [46] A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROST, M
    KRUG, J
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) : 1 - 13
  • [47] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [48] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163
  • [49] On a nonlocal analog of the Kuramoto-Sivashinsky equation
    Granero-Belinchon, Rafael
    Hunter, John K.
    [J]. NONLINEARITY, 2015, 28 (04) : 1103 - 1133
  • [50] On the Global Existence for the Kuramoto-Sivashinsky Equation
    Igor Kukavica
    David Massatt
    [J]. Journal of Dynamics and Differential Equations, 2023, 35 : 69 - 85