Prediction of buffeting in transonic flow

被引:0
|
作者
Kourta, A
Petit, G
Rosenblum, JP
Courty, JC
机构
[1] IMFT, UMR5502, F-31400 Toulouse, France
[2] Dassault Aviat, F-92124 St Cloud, France
来源
COMPTES RENDUS MECANIQUE | 2005年 / 333卷 / 11期
关键词
turbulence; transonic flow; buffet; turbulence model; numerical simulations; airfoil;
D O I
10.1016/j.crme.2005.09.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Prediction of buffeting in transonic flow. Under transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow separation on the wing upper surface induce flow instabilities, designated as buffeting, which result in structure vibrations. This phenomenon can greatly influence the aerodynamic performance. These self-sustained flow excitations can produce enough energy to excite the structure. The objective of the present work is to correctly predict this unsteady phenomenon by using unsteady Navier-Stokes averaged equations with time dependent turbulence model based on suitable (k-epsilon) turbulent eddy viscosity model. The model used is based on the turbulent viscosity concept where the turbulent viscosity coefficient C-mu, is related to local deformation and rotation rates. To validate this model, the flow over a flat plate at Mach number of 0.6 is calculated. The solution is in agreement with analytical results. The ONERA OAT15A transonic airfoil was chosen to describe buffet phenomena. Computational results show the ability of the present model to predict physical phenomena of the flow oscillations allowing a suitable description of the unsteady shock wave boundary layer interaction. To cite this article: A. Kourta et al., C. R. Mecanique 333 (2005). (c) 2005 Academie des sciences. Publie par Elsevier SAS. tous droits reserves.
引用
收藏
页码:810 / 817
页数:8
相关论文
共 50 条
  • [41] Selection of a steam condensation model for atmospheric air transonic flow prediction
    Wisniewski, Piotr
    Majkut, Miroslaw
    Dykas, Slawomir
    Smolka, Krystian
    Zhang, Guojie
    Pritz, Balazs
    [J]. APPLIED THERMAL ENGINEERING, 2022, 203
  • [42] Numerical prediction of viscous transonic 3-D flow in a channel
    Freskos, G
    Koschel, W
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1997, 8 (01) : 51 - &
  • [43] Axial transonic compressor flow instability prediction based on eigenvalue theory
    Liu, Xiaohua
    Zhou, Yanpei
    Sun, Dakun
    Ma, Yunfei
    Sun, Xiaofeng
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2014, 35 (11): : 2979 - 2991
  • [44] NEW METHODS OF BUFFETING PREDICTION ON CIVIL AIRCRAFT
    DESTUYNDER, R
    LEGRAIN, I
    NAUDIN, P
    [J]. RECHERCHE AEROSPATIALE, 1990, (02): : 31 - 38
  • [45] Koopman neural operator approach to fast flow prediction of airfoil transonic buffet
    Meng, Deying
    Zhu, Yiding
    Wang, Jianchun
    Shi, Yipeng
    [J]. PHYSICS OF FLUIDS, 2024, 36 (07)
  • [46] Data-driven augmentation of a RANS turbulence model for transonic flow prediction
    Grabe, Cornelia
    Jaeckel, Florian
    Khurana, Parv
    Dwight, Richard P.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2023, 33 (04) : 1544 - 1561
  • [47] Numerical prediction of airfoil characteristics in a transonic droplet-laden air flow
    Yeom, Geum-Su
    Chang, Keun-Shik
    Baek, Seung Wook
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (1-3) : 453 - 469
  • [48] FLOW IN TRANSONIC COMPRESSORS
    KERREBROCK, JL
    [J]. AIAA JOURNAL, 1981, 19 (01) : 4 - 19
  • [49] TRANSONIC SWIRLING FLOW
    LEWELLEN, WS
    BURNS, WJ
    STRICKLAND, HJ
    [J]. AIAA JOURNAL, 1969, 7 (07) : 1290 - +
  • [50] TRANSONIC FLOW MEASUREMENTS
    GRIFFITH, WC
    [J]. PHYSICAL REVIEW, 1950, 79 (03): : 546 - 546