A Predictor-corrector algorithm with multiple corrections for convex quadratic programming

被引:1
|
作者
Liu, Zhongyi [1 ]
Chen, Yue [2 ]
Sun, Wenyu [3 ]
Wei, Zhihui [4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Jincheng Coll, Nanjing 211156, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing 210097, Jiangsu, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex quadratic programming; Primal-dual interior-point method; Predictor-corrector; Polynomial complexity; INTERIOR-POINT ALGORITHM; LINEAR OPTIMIZATION; SOLVER; STEP;
D O I
10.1007/s10589-011-9421-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently an infeasible interior-point algorithm for linear programming (LP) was presented by Liu and Sun. By using similar predictor steps, we give a (feasible) predictor-corrector algorithm for convex quadratic programming (QP). We introduce a (scaled) proximity measure and a dynamical forcing factor (centering parameter). The latter is used to force the duality gap to decrease. The algorithm can decrease the duality gap monotonically. Polynomial complexity can be proved and the result coincides with the best one for LP, namely, .
引用
收藏
页码:373 / 391
页数:19
相关论文
共 50 条
  • [21] The predictor-corrector algorithm for hourglass control
    Sun, Zhiyuan
    Liu, Jun
    Wang, Pei
    COMPUTERS & FLUIDS, 2020, 209 (209)
  • [22] On the convergence of a predictor-corrector variant algorithm
    R. Almeida
    A. Teixeira
    TOP, 2015, 23 : 401 - 418
  • [23] Modified predictor-corrector method for linear programming
    Luo, Zhi-Quan
    Wu, Shiquan
    Computational Optimization and Applications, 1994, 3 (01) : 83 - 91
  • [24] On the convergence of a predictor-corrector variant algorithm
    Almeida, R.
    Teixeira, A.
    TOP, 2015, 23 (02) : 401 - 418
  • [25] On Polynomiality of a Predictor-Corrector Variant Algorithm
    Almeida, R.
    Bastos, F.
    Teixeira, A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 959 - +
  • [26] ADJOINT-BASED PREDICTOR-CORRECTOR SEQUENTIAL CONVEX PROGRAMMING FOR PARAMETRIC NONLINEAR OPTIMIZATION
    Quoc Tran Dinh
    Savorgnan, Carlo
    Diehl, Moritz
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1258 - 1284
  • [27] PREDICTOR-CORRECTOR METHOD FOR DYNAMIC-PROGRAMMING
    LEW, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (01) : 54 - 56
  • [28] A NEW CORRECTOR-PREDICTOR ALGORITHM FOR CONVEX QUADRATIC SEMIDEFINITE OPTIMIZATION
    Li, Xin
    Cao, Xiaohui
    Chen, Yan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 601 - 616
  • [29] MODIFIED PREDICTOR-CORRECTOR ALGORITHM FOR LOCATING WEIGHTED CENTERS IN LINEAR-PROGRAMMING
    ZHANG, Y
    ELBAKRY, A
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (02) : 319 - 331
  • [30] A MEHROTRA TYPE PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING
    Asadi, Soodabeh
    Mansouri, Hossein
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2019, 9 (02): : 147 - 156