Bipolar Electrochemistry - A Powerful Tool for Micro/Nano-Electrochemistry

被引:11
|
作者
Wang, Yu-Ling [1 ]
Cao, Jun-Tao [1 ]
Liu, Yan-Ming [1 ]
机构
[1] Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang Key Lab Funct Nanomat Bioanal, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
micro; nano-electrochemistry; nanoscale bipolar electrochemistry; wireless nature; gradient potential distribution; analytical application for single entities; ELECTROGENERATED CHEMILUMINESCENCE; NANOPORE ELECTRODE; MICROELECTRODES; PRINCIPLES; BEHAVIOR; SURFACE; SYSTEM; ARRAYS; CELLS; FIELD;
D O I
10.1002/open.202200163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The understanding of areas for "classical" electrochemistry (including catalysis, electrolysis and sensing) and bio-electrochemistry at the micro/nanoscale are focus on the continued performance facilitations or the exploration of new features. In the recent 20 years, a different mode for driving electrochemistry has been proposed, which is called as bipolar electrochemistry (BPE). BPE has garnered attention owing to the interesting properties: (i) its wireless nature facilitates electrochemical sensing and high throughput analysis; (ii) the gradient potential distribution on the electrodes surface is a useful tool for preparing gradient surfaces and materials. These permit BPE to be used for modification and analytical applications on a micro/nanoscale surface. This review aims to introduce the principle and classification of BPE and BPE at micro/nanoscale; sort out its applications in electrocatalysis, electrosynthesis, electrophoresis, power supply and so on; explain the confined BPE and summarize its analytical application for single entities (single cells, single particles and single molecules), and discuss finally the important direction of micro/nanoscale BPE.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry
    Arias-Aranda, Leslie R.
    Salinas, Gerardo
    Li, Haidong
    Hogan, Conor F.
    Kuhn, Alexander
    Bouffier, Laurent
    Sojic, Neso
    [J]. ChemElectroChem, 2024, 11 (22)
  • [32] Dissymmetric carbon nanotubes by bipolar electrochemistry
    Warakulwit, Chompunuch
    Nguyen, Thi
    Majimel, Jerome
    Delville, Marie-Helene
    Lapeyre, Veronique
    Garrigue, Patrick
    Ravaine, Valerie
    Limtrakul, Jumras
    Kuhn, Alexander
    [J]. NANO LETTERS, 2008, 8 (02) : 500 - 504
  • [33] Pressure-Driven Bipolar Electrochemistry
    Dumitrescu, Ioana
    Anand, Robbyn K.
    Fosdick, Stephen E.
    Crooks, Richard M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (13) : 4687 - 4689
  • [34] Electrochemistry, a tool for the corrosion engineer
    Bonora, Pierr L.
    Krolikowska, Agnieszka
    [J]. OCHRONA PRZED KOROZJA, 2011, 54 (12): : 654 - 658
  • [35] Organic electrochemistry as a tool for synthesis
    Little, R. Daniel
    Moeller, Kevin D.
    [J]. Electrochemical Society Interface, 2002, 11 (04): : 36 - 42
  • [36] Electrochemistry as a Tool for an Enzyme Characterization
    Gal, Miroslav
    Krahulec, Jan
    Jirickova, Kristna
    Sokolova, Romana
    Hives, Jan
    [J]. XXXIV. MODERNI ELEKTROCHEMICKE METODY, 2014, : 40 - 43
  • [37] Hydrogel electrodeposition based on bipolar electrochemistry
    Ino, Kosuke
    Matsumoto, Tomoaki
    Taira, Noriko
    Kumagai, Tatsuki
    Nashimoto, Yuji
    Shiku, Hitoshi
    [J]. LAB ON A CHIP, 2018, 18 (16) : 2425 - 2432
  • [38] Alternating current-bipolar electrochemistry
    Essmann, Vera
    Clausmeyer, Jan
    Schuhmann, Wolfgang
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2017, 75 : 82 - 85
  • [39] Paper-Based Bipolar Electrochemistry
    Renault, Christophe
    Scida, Karen
    Knust, Kyle N.
    Fosdick, Stephen E.
    Crooks, Richard M.
    [J]. JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2013, 4 (04) : 146 - 152
  • [40] Two-Dimensional Bipolar Electrochemistry
    Fosdick, Stephen E.
    Crooks, John A.
    Chang, Byoung-Yong
    Crooks, Richard M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (27) : 9226 - 9227