A Distributionally Robust Optimization Approach for Multivariate Linear Regression under the Wasserstein Metric

被引:0
|
作者
Chen, Ruidi [1 ]
Paschalidis, Ioannis Ch. [2 ,3 ]
机构
[1] Boston Univ, Div Syst Engn, Boston, MA 02446 USA
[2] Boston Univ, Dept Elect & Comp Engn, Div Syst Engn, 8 St Marys St, Boston, MA 02215 USA
[3] Boston Univ, Dept Biomed Engn, 8 St Marys St, Boston, MA 02215 USA
关键词
D O I
10.1109/cdc40024.2019.9029832
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Distributionally Robust Optimization (DRO) approach for Multivariate Linear Regression (MLR), where multiple correlated response variables are to be regressed against a common set of predictors. We develop a regularized MLR formulation that is robust to large perturbations in the data, where the regularizer is the dual norm of the regression coefficient matrix in the sense of a newly defined matrix norm. We establish bounds on the prediction bias of the solution, offering insights on the role of the regularizer in controlling the prediction error. Experimental results show that, compared to a number of popular MLR methods, our approach leads to a lower out-of-sample Mean Squared Error (MSE) in various scenarios.
引用
收藏
页码:3655 / 3660
页数:6
相关论文
共 50 条
  • [31] Distributionally robust chance constrained games under Wasserstein ball
    Xia, Tian
    Liu, Jia
    Lisser, Abdel
    [J]. OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 315 - 321
  • [32] Distributionally robust disaster relief planning under the Wasserstein set
    El Tonbari, Mohamed
    Nemhauser, George
    Toriello, Alejandro
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2024, 168
  • [33] Wasserstein Distributionally Robust Control of Partially Observable Linear Stochastic Systems
    Hakobyan, Astghik
    Yang, Insoon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6121 - 6136
  • [34] A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression
    Li, Jiajin
    Huang, Sen
    So, Anthony Man-Cho
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [35] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602
  • [36] A Modified Gradient Method for Distributionally Robust Logistic Regression over the Wasserstein Ball
    Wang, Luyun
    Zhou, Bo
    [J]. MATHEMATICS, 2023, 11 (11)
  • [37] Entropy-regularized Wasserstein distributionally robust shape and topology optimization
    Dapogny, Charles
    Iutzeler, Franck
    Meda, Andrea
    Thibert, Boris
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (03)
  • [38] Entropy-regularized Wasserstein distributionally robust shape and topology optimization
    Charles Dapogny
    Franck Iutzeler
    Andrea Meda
    Boris Thibert
    [J]. Structural and Multidisciplinary Optimization, 2023, 66
  • [39] Principled Learning Method for Wasserstein Distributionally Robust Optimization with Local Perturbations
    Kwon, Yongchan
    Kim, Wonyoung
    Won, Joong-Ho
    Paik, Myunghee Cho
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [40] Distributionally Robust Chance-Constrained Approximate AC-OPF With Wasserstein Metric
    Duan, Chao
    Fang, Wanliang
    Jiang, Lin
    Yao, Li
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) : 4924 - 4936