Protecting VNF services with smart online behavior anomaly detection method

被引:3
|
作者
Cheng, Yuxia [1 ]
Yao, Huijuan [2 ]
Wang, Yu [3 ]
Xiang, Yang [4 ]
Li, Hongpei [2 ]
机构
[1] Hangzhou Dianzi Univ, 1 Ave 2, Hangzhou, Zhejiang, Peoples R China
[2] Huawei Technol Co LTD, Shield Lab, Beijing, Peoples R China
[3] Guangzhou Univ, Guangzhou Higher Educ Mega Ctr, 230 Wai Huan Xi Rd, Guangzhou, Guangdong, Peoples R China
[4] Swinburne Univ Technol, John St, Hawthorn, Vic, Australia
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2019年 / 95卷
关键词
NFV; Behavior model; HMM; Anomaly detection; OpenStack; INTRUSION DETECTION SYSTEM; HIDDEN MARKOV MODEL; PROBABILISTIC FUNCTIONS; NETWORK;
D O I
10.1016/j.future.2018.12.058
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Network Function Virtualization (NFV) is an emerging technology that allows network operators to deploy their Virtualized Network Functions (VNFs) on low-cost commodity servers in the cloud data center. The VNFs, such as virtual routers, firewalls etc., that typically control and transmit critical network packages, require strong security guarantees. However, detecting malicious or malfunctioning VNFs are challenging, as the behaviors of VNFs are dynamic and complex due to the changing network traffics in the cloud. In this paper, we propose a smart and efficient Hidden Markov Model based anomaly detection system (named vGuard) to protect online VNF services in the cloud. A general multivariate HMM model is proposed to profile the normal VNF behavior patterns. Using the VNF behavior model trained with normal observation sequences, vGuard can effectively detect abnormal behaviors online. vGuard is a general framework that can train different types of VNF behavior models. We implement the vGuard prototype in the OpenStack platform. Two types of VNF models, virtual router and virtual firewall, are trained using real normal network traffics in our experiment evaluation. A collection of abnormal attack cases are tested on the VNFs that showed the effectiveness of vGuard in detecting VNF behavior anomalies. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 50 条
  • [31] Online VNF Placement and Chaining for Value-added Services in Content Delivery Networks
    Jahromi, Narjes Tahghigh
    Kianpisheh, Somayeh
    Glitho, Roch H.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON LOCAL AND METROPOLITAN AREA NETWORKS (LANMAN), 2018, : 19 - 24
  • [32] Online Anomaly Detection using KDE
    Ahmed, Tarem
    GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 1009 - 1016
  • [33] Online Anomaly Detection in Big Data
    Balasingam, B.
    Sankavaram, M. S.
    Choi, K.
    Ayala, D. F. M.
    Sidoti, D.
    Pattipati, K.
    Willett, P.
    Lintz, C.
    Commeau, G.
    Dorigo, F.
    Fahrny, J.
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [34] ONLINE ANOMALY DETECTION IN MULTIVARIATE SETTINGS
    Mozaffari, Mahsa
    Yilmaz, Yasin
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [35] Online Anomaly Detection in HPC Systems
    Borghesi, Andrea
    Libri, Antonio
    Benini, Luca
    Bartolini, Andrea
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 229 - 233
  • [36] Online Anomaly Detection With Nested Trees
    Delibalta, Ibrahim
    Gokcesu, Kaan
    Simsek, Mustafa
    Baruh, Lemi
    Kozat, Suleyman S.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (12) : 1867 - 1871
  • [37] Anomaly detection in online social networks
    Savage, David
    Zhang, Xiuzhen
    Yu, Xinghuo
    Chou, Pauline
    Wang, Qingmai
    SOCIAL NETWORKS, 2014, 39 : 62 - 70
  • [38] Effective Online Software Anomaly Detection
    Chen, Yizhen
    Ying, Ming
    Liu, Daren
    Alim, Adil
    Chen, Feng
    Chen, Mei-Hwa
    PROCEEDINGS OF THE 26TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS (ISSTA'17), 2017, : 136 - 146
  • [39] Enabling Risk Management for Smart Infrastructures with an Anomaly Behavior Analysis Intrusion Detection System
    Pacheco, Jesus
    Zhu, Xiaoyang
    Badr, Youakim
    Hariri, Salim
    2017 IEEE 2ND INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W), 2017, : 324 - 328
  • [40] Online Multivariate Time Series Anomaly Detection Method Based on Contrastive Learning
    Dong, Xiyao
    Liu, Hui
    Du, Junzhao
    Wang, Zhengkai
    Wang, Cheng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 468 - 479