Bordered Conjugates of Words over Large Alphabets

被引:0
|
作者
Harju, Tero [1 ]
Nowotka, Dirk [2 ]
机构
[1] Univ Turku, Turku, Finland
[2] Univ Stuttgart, D-7000 Stuttgart, Germany
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2008年 / 15卷 / 01期
关键词
combinatorics on words; border correlation; binary words; square-free; cyclically square-free; Currie set;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The border correlation function attaches to every word w a binary word beta(w) of the same length where ith letter tells whether the ith conjugate w ' = vu of w = uv is bordered or not. Let [u] denote the set of conjugates of word w. We show that for a 3-letter alphabet A, the set of beta-images equals beta(A(n)) B*/([ab(n-1)] UD) where D = {a(n)} if n epsilon {5, 7, 9, 10, 14, 17}, and otherwise D = phi. Hence the number of beta-images is B(3)(n) = 2(n) - n - m, where m = 1 if n epsilon {5, 7, 9, 10, 14, 17} and m = 0 otherwise.
引用
收藏
页数:7
相关论文
共 50 条