Application of non-negative matrix factorization to multispectral FLIM data analysis

被引:18
|
作者
Pande, Paritosh [1 ]
Applegate, Brian E. [1 ]
Jo, Javier A. [1 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2012年 / 3卷 / 09期
基金
美国国家卫生研究院;
关键词
COMPONENT ANALYSIS; FLUORESCENCE; FLUOROPHORES; ALGORITHM;
D O I
10.1364/BOE.3.002244
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Existing methods of interpreting fluorescence lifetime imaging microscopy (FLIM) images are based on comparing the intensity and lifetime values at each pixel with those of known fluorophores. This method becomes unwieldy and subjective in many practical applications where there are several fluorescing species contributing to the bulk fluorescence signal, and even more so in the case of multispectral FLIM. Non-negative matrix factorization (NMF) is a multivariate data analysis technique aimed at extracting non-negative signatures of pure components and their non-negative abundances from an additive mixture of those components. In this paper, we present the application of NMF to multispectral time-domain FLIM data to obtain a new set of FLIM features (relative abundance of constituent fluorophores). These features are more intuitive and easier to interpret than the standard fluorescence intensity and lifetime values. The proposed approach, unlike several FLIM data analysis methods, is not limited by the number of constituent fluorescing species or their possibly complex decay dynamics. Moreover, the new set of FLIM features can be obtained by processing raw multispectral FLIM intensity data, thereby rendering time deconvolution unnecessary and resulting in lesser computational time and relaxed SNR requirements. The performance of the NMF method was validated on simulated and experimental multispectral time-domain FLIM data. The NMF features were also compared against the standard intensity and lifetime features, in terms of their ability to discriminate between different types of atherosclerotic plaques. (c) 2012 Optical Society of America
引用
收藏
页码:2244 / 2262
页数:19
相关论文
共 50 条
  • [21] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [22] Algorithms for non-negative matrix factorization
    Lee, DD
    Seung, HS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 556 - 562
  • [23] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [24] MULTIVARIATE NON-NEGATIVE MATRIX FACTORIZATION WITH APPLICATION TO ENERGY DISAGGREGATION
    Schirmer, Pascal A.
    Mporas, Iosif
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3285 - 3289
  • [25] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [26] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [27] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [28] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [29] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [30] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +