Electron-transfer mechanisms through biological redox chains in multicenter enzymes

被引:107
|
作者
Jeuken, LJC
Jones, AK
Chapman, SK
Cecchini, G
Armstrong, FA
机构
[1] Univ Oxford, Inorgan Chem Lab, Oxford OX1 3QR, England
[2] Univ Edinburgh, Dept Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[3] Univ Calif San Francisco, Div Mol Biol, DVA Med Ctr, San Francisco, CA 94121 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94121 USA
关键词
D O I
10.1021/ja012638w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new approach for studying intramolecular electron transfer in multicenter enzymes is described. Two fumarate reductases, adsorbed on an electrode in a fully active state, have been studied using square-wave voltammetry as a kinetic method to probe the mechanism of the long-range electron transfer to and from the buried active site. Flavocytochrome c(3) (Fcc(3)), the globular fumarate reductase from Shewanella frigidimarina, and the soluble subcomplex of the membrane-bound fumarate reductase of Escherichia coli (FrdAB) each contain an active site FAD that is redox-connected to the surface by a chain of hemes or Fe-S clusters, respectively. Using square-wave voltammetry with large amplitudes, we have measured the electron-transfer kinetics of the FAD cofactor as a function of overpotential. The results were modeled in terms of the FAD group receiving or donating electrons either via a direct mechanism or one involving hopping via the redox chain. The FrdAB kinetics could be described by both models, while the Fcc(3) data could only be fit on the basis of a direct electron-transfer mechanism. This raises the likelihood that electron transfer can occur via a superexchange mechanism utilizing the heme groups to enhance electronic coupling. Finally, the FrdAB data show, in contrast to Fcc3, that the maximum ET rate at high overpotential is related to the turnover number for FrdAB measured previously so that electron transfer is the limiting step during catalysis.
引用
收藏
页码:5702 / 5713
页数:12
相关论文
共 50 条
  • [21] ELECTRON-TRANSFER MECHANISMS IN HEMOGLOBIN
    BONAVENTURA, C
    BONAVENTURA, J
    HARRINGTON, J
    CASHON, R
    BIOPHYSICAL JOURNAL, 1986, 49 (02) : A538 - A538
  • [22] METALLOPROTEIN ELECTRON-TRANSFER MECHANISMS
    GRAY, HB
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 182 (AUG): : 100 - INOR
  • [23] REDOX REACTIONS OF THIOETHERS AND THEIR METAL-COMPLEXES AS MODELS FOR BIOLOGICAL ELECTRON-TRANSFER
    RUSSELL, DD
    STEFFEN, LK
    SABAHI, M
    HOJJATIE, M
    GLASS, RS
    WILSON, GS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C496 - C496
  • [24] ELECTRON-TRANSFER DUE TO THROUGH-BOND INTERACTIONS - STUDY OF ALIPHATIC CHAINS
    BROO, A
    LARSSON, S
    CHEMICAL PHYSICS, 1990, 148 (01) : 103 - 115
  • [25] ELECTRON-TRANSFER AND TRANSPORT STUDIES OF REDOX POLYMERS
    LOPEZ, S
    LOWERY, SP
    ABRUNA, HD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 200 : 87 - INOR
  • [26] MECHANISMS OF TRANSMEMBRANE ELECTRON-TRANSFER - DIFFUSION OF UNCHARGED REDOX FORMS OF VIOLOGEN, 4,4'-BIPYRIDINE, AND NICOTINAMIDE WITH LONG ALKYL CHAINS
    HAMMARSTROM, L
    ALMGREN, M
    LIND, J
    MERENYI, G
    NORRBY, T
    AKERMARK, B
    JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (39): : 10083 - 10091
  • [27] PHOTOINDUCED ELECTRON-TRANSFER IN ORGANIC REDOX REACTIONS
    FOX, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 185 (MAR): : 2 - ORGN
  • [28] THE REALIZATION OF ELECTRON-TRANSFER REACTIONS OF REDOX PROTEINS
    HILL, HAO
    CHEMICA SCRIPTA, 1983, 21 (1-5): : 27 - 27
  • [29] MODULAR REDOX SYSTEMS FOR PHOTOINDUCED ELECTRON-TRANSFER
    MECKLENBURG, SL
    MCCAFFERTY, DG
    PEEK, BM
    ERICKSON, BW
    MEYER, TJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 292 - INOR
  • [30] ELECTRON-TRANSFER IN BIOLOGICAL-SYSTEMS
    LARSSON, S
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1982, : 385 - 397