Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data

被引:33
|
作者
Ma, Shujie [1 ]
Song, Qiongxia [2 ]
Wang, Li [3 ]
机构
[1] UC Riverside, Dept Stat, Riverside, CA 92521 USA
[2] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
additive partially linear model; clustered data; longitudinal data; model selection; penalized least squares; spline; PARTIALLY LINEAR-MODELS; ESTIMATING EQUATIONS; EFFICIENT ESTIMATION; ADDITIVE REGRESSION; INFERENCE;
D O I
10.3150/11-BEJ386
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of simultaneous variable selection and estimation in additive, partially linear models for longitudinal/clustered data. We propose an estimation procedure via polynomial splines to estimate the nonparametric components and apply proper penalty functions to achieve sparsity in the linear part. Under reasonable conditions, we obtain the asymptotic normality of the estimators for the linear components and the consistency of the estimators for the nonparametric components. We further demonstrate that, with proper choice of the regularization parameter, the penalized estimators of the non-zero coefficients achieve the asymptotic oracle property. The finite sample behavior of the penalized estimators is evaluated with simulation studies and illustrated by a longitudinal CD4 cell count data set.
引用
收藏
页码:252 / 274
页数:23
相关论文
共 50 条