A new form of the Segal-Bargmann transform for Lie groups of compact type

被引:21
|
作者
Hall, BC [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
D O I
10.4153/CJM-1999-035-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I consider a two-parameter family B-s,B-t of unitary transforms mapping an L-2-space over a Lie group of compact type onto a holomorphic L-2-space over the complexified group. These were studied using infinite-dimensional analysis in joint work with B. Driver, but are treated here by finite-dimensional means. These transforms interpolate between two previously known transforms, and all should be thought of as generalizations of the classical Segal-Bargmann transform. I consider also the limiting cases s --> infinity and s --> t/2.
引用
收藏
页码:816 / 834
页数:19
相关论文
共 50 条
  • [31] The generalized Segal-Bargmann transform and special functions
    Davidson, M
    Olafsson, G
    ACTA APPLICANDAE MATHEMATICAE, 2004, 81 (1-3) : 29 - 50
  • [32] The Heat Semigroup in the Compact Heckman-Opdam Setting and the Segal-Bargmann Transform
    Remling, Heiko
    Roesler, Margit
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (18) : 4200 - 4225
  • [33] The complex-time Segal-Bargmann transform
    Driver, Bruce K.
    Hall, Brian C.
    Kemp, Todd
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (01)
  • [34] Plancherel and inversion formulas for the Dunkl-type Segal-Bargmann transform
    Fethi Soltani
    Meriem Nenni
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [35] (Heisenberg-)Weyl Algebras, Segal-Bargmann Transform and Representations of Poincare Groups
    Havlicek, Miloslav
    Kotrbaty, Jan
    Moylan, Patrick
    Posta, Severin
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [36] Segal-Bargmann transform and Paley-Wiener theorems on Heisenberg motion groups
    Sen, Suparna
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (01) : 13 - 28
  • [37] Yang-Mills theory and the Segal-Bargmann transform
    Driver, BK
    Hall, BC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (02) : 249 - 290
  • [38] Branching coefficients of holomorphic representations and Segal-Bargmann transform
    Zhang, GK
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 195 (02) : 306 - 349
  • [39] Holomorphic Sobolev spaces and the generalized Segal-Bargmann transform
    Hall, BC
    Lewkeeratiyutkul, W
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 192 - 220
  • [40] Compact vectorial Toeplitz operators on the Segal-Bargmann space
    Beberok, Tomasz
    Budzynski, Piotr
    Kang, Dong-O
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)