Microtexture analysis of Zr-2.5Nb pressure tubing

被引:0
|
作者
Griffiths, M [1 ]
Holt, RA [1 ]
Li, J [1 ]
Saimoto, S [1 ]
机构
[1] AECL, Chalk River, ON, Canada
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Extruded and cold-worked Zr-2.5 wt%Nb pressure tubes contain ex-phase grains that are mostly platelets (containing about 1 wt% Nh in solution) having aspect ratios of about 1:5-10:20-40 in the radial, transverse and longitudinal axes of the tube respectively. In many cases these platelet grains are oriented with their c-axes within about 20 degrees of the transverse direction. In addition to these platelet-like grains, that formed during the extrusion process, there are a significant proportion of other grains that existed prior to extrusion. These "prior-alpha" grains are subject to deformation during extrusion, and the extent of flattening is dependent on their crystallographic orientation relative to the deformation path in passing through the extrusion die. The net effect is that grains with c-axes oriented towards the radial direction are flattened less than those of other orientations and appear more equiaxed when viewed parallel with the longitudinal axis of the extruded tube. This relationship between grain morphology and orientation has been studied using Electron Back-scatter Diffraction Pattern (EBDP) analysis and the results show that for the deformed "prior-alpha" grains there are two distinct populations of grains: (a) one equiaxed in the radial-transverse plane having c-axes close to the radial direction; and (b) one flattened in the radial direction with c-axes close to the transverse direction. Subsequent cold-working of the as-extruded tube introduces dislocations into the grains and the dislocation structure is dependent on grain orientation.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [41] Anisotropy and variability in thermal creep behaviour of Zr-2.5Nb pressure tube
    Patel, Vivek
    Gopalan, Avinash
    Khandelwal, Harshit K.
    Keskar, Nachiket
    Devi, Y. Pushpalatha
    Singh, R. N.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2022, 200
  • [42] IRRADIATION EFFECTS ON ZR-2.5NB IN POWER REACTORS
    Song, Carol
    CNL NUCLEAR REVIEW, 2016, 5 (01) : 17 - 36
  • [43] Microsegregation of oxygen in Zr-2.5Nb alloy materials
    Whiteshell Lab, Pinawa, Canada
    Metall Mat Trans A Phys Metall Mat Sci, 2 (431-440):
  • [44] Modelling of the Zr-2.5Nb alloy properties with hydrides
    Dundulis, G.
    Karalevcius, R.
    Janulionis, R.
    Grybenas, A.
    MECHANIKA, 2007, (02): : 23 - 26
  • [45] PRECIPITATION IN ZR-2.5NB ENHANCED BY PROTON IRRADIATION
    CANN, CD
    SO, CB
    STYLES, RC
    COLEMAN, CE
    JOURNAL OF NUCLEAR MATERIALS, 1993, 205 : 267 - 272
  • [46] Microsegregation of oxygen in Zr-2.5Nb alloy materials
    Choubey, R
    Jackman, JA
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (02): : 431 - 440
  • [47] Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5Nb
    Root, JH
    Small, WM
    Khatamian, D
    Woo, OT
    ACTA MATERIALIA, 2003, 51 (07) : 2041 - 2053
  • [48] Mechanism of deuterium pickup in Zr-2.5Nb alloy
    Ploc, RA
    MATERIALS AT HIGH TEMPERATURES, 2000, 17 (01) : 29 - 34
  • [49] Corrosion Fatigue Crack Initiation in Zr-2.5Nb
    Nordin, H. M.
    Phillion, A. J.
    Karlsen, T. M.
    Persaud, S.
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL DEGRADATION OF MATERIALS IN NUCLEAR POWER SYSTEMS - WATER REACTORS, VOL 2, 2018, : 525 - 541
  • [50] Modelling of the Zr-2.5Nb alloy properties with hydrides
    Lithuanian Energy Institute, 3 Breslaujos str., 44403 Kaunas, Lithuania
    不详
    Mechanika, 2007, 2 (23-26):