The nonexistence of global solutions for a time fractional nonlinear Schrodinger equation without gauge invariance

被引:16
|
作者
Zhang, Quanguo [1 ]
Sun, Hong-Rui [2 ]
Li, Yaning [3 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
关键词
Time fractional Schrodinger equation; Nonexistence; Non-gauge invariance; BLOW-UP; CAUCHY-PROBLEMS; EXISTENCE;
D O I
10.1016/j.aml.2016.08.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following time fractional Schrodinger equation i(0)(alpha)(C) D-t(alpha) u + Delta u = lambda vertical bar u vertical bar(p), x is an element of R-N, t is an element of [0,T), where 0 < alpha < 1, i(alpha) denotes the principal value of i(alpha), T > 0, lambda is an element of C \ {0}, p > 1, u(t, x) is a complex -valued function, and Pru denotes Caputo fractional derivative of order a. We prove that the problem admits no global weak solution with suitable initial data when 1 < p < 1 + 2/N by using the test function method, and also give some conditions which imply the problem has no global weak solution for every p > 1. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 50 条
  • [1] Finite time blowup of solutions to the nonlinear Schrodinger equation without gauge invariance
    Fujiwara, Kazumasa
    Ozawa, Tohru
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [2] Existence and nonexistence of solutions for the fractional nonlinear Schrodinger equation
    Alarcon, Salomon
    Ritorto, Antonella
    Silva, Analia
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8903 - 8924
  • [3] Some nonexistence results for space-time fractional Schrodinger equations without gauge invariance
    Kirane, Mokhtar
    Fino, Ahmad Z.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1361 - 1387
  • [4] Lifespan of strong solutions to the periodic nonlinear Schrodinger equation without gauge invariance
    Fujiwara, Kazumasa
    Ozawa, Tohru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 1023 - 1030
  • [5] BLOWUP RESULTS FOR THE FRACTIONAL SCHRODINGER EQUATION WITHOUT GAUGE INVARIANCE
    Shi, Qihong
    Peng, Congming
    Wang, Qingxuan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 6009 - 6022
  • [6] On the Cauchy problem of the nonlinear Schrodinger equation without gauge invariance
    Ren, Yuanyuan
    Li, Yongsheng
    Wang, Xiaolong
    [J]. APPLICABLE ANALYSIS, 2019, 98 (08) : 1415 - 1428
  • [7] Nonexistence of Global Weak Solutions for a Nonlinear Schrodinger Equation in an Exterior Domain
    Alqahtani, Awatif
    Jleli, Mohamed
    Samet, Bessem
    Vetro, Calogero
    [J]. SYMMETRY-BASEL, 2020, 12 (03):
  • [8] GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION
    Inui, Takahisa
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 557 - 590
  • [9] Non-global solutions for the inhomogeneous nonlinear Schrödinger equation without gauge invariance
    Saanouni, Tarek
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [10] Nonexistence of Solutions of Higher-order Nonlinear Non-gauge Schrodinger Equation
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    Nabti, Abderrazak
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40