Nonexistence of Solutions of Higher-order Nonlinear Non-gauge Schrodinger Equation

被引:0
|
作者
Alsaedi, Ahmed [1 ]
Ahmad, Bashir [1 ]
Kirane, Mokhtar [1 ,2 ]
Nabti, Abderrazak [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, LaSIE, Ave M Crepeau, F-17000 La Rochelle, France
[3] Univ Cheikh El Arbi Tebessi, Dept Math & Informat, Tebessa 12002, Algeria
关键词
Schrodinger equation; Nonexistence of solutions; Local and global existence; BLOW-UP;
D O I
10.5269/bspm.47911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonexistence result is proved of the space higher-order nonlinear Schrodinger equation i partial derivative(t)u - (-Delta)(m) (vertical bar u vertical bar(n-1) u) = lambda vertical bar u vertical bar(p), x is an element of R-N, t > 0, where m > 1, n > 1 and p > n. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 x 2 - system i partial derivative(t) u - (-Delta)(m)u = lambda vertical bar v vertical bar(p), x is an element of R-N, t > 0, i partial derivative(t) v - (-Delta)(m)v = delta vertical bar v vertical bar(q), x is an element of R-N, t > 0, where m > 1, p, q > 1, and lambda, delta is an element of C\{0}.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [2] NONEXISTENCE OF NON-TRIVIAL GLOBAL WEAK SOLUTIONS FOR HIGHER-ORDER NONLINEAR SCHRODINGER EQUATIONS
    Nabti, Abderrazak
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [3] Exact soliton solutions for the higher-order nonlinear Schrodinger equation
    Li, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (08): : 1225 - 1237
  • [4] Exact analytical solutions of higher-order nonlinear Schrodinger equation
    Wang, Hongcheng
    Liang, Jianchu
    Chen, Guihua
    Zhou, Ling
    Ling, Dongxiong
    Liu, Minxia
    [J]. OPTIK, 2017, 131 : 438 - 445
  • [5] Bifurcation Analysis and Solutions of a Higher-Order Nonlinear Schrodinger Equation
    Li, Yi
    Shan, Wen-rui
    Shuai, Tianping
    Rao, Ke
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [6] Exact solutions for a higher-order nonlinear Schrodinger equation in atmospheric dynamics
    Huang, F
    Tang, XY
    Lou, SY
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (03) : 573 - 576
  • [7] STABILIZATION OF SOLUTIONS TO HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION WITH LOCALIZED DAMPING
    Bisognin, Eleni
    Bisognin, Vanilde
    Vera Villagran, Octavio Paulo
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [8] New phase modulated solutions for a higher-order nonlinear Schrodinger equation
    Kumar, CN
    Durganandini, P
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1999, 53 (02): : 271 - 277
  • [9] Interactional solutions of the extended nonlinear Schrodinger equation with higher-order operators
    Lou, Yu
    Zhang, Yi
    Ye, Rusuo
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (10) : 1989 - 2000
  • [10] EXACT-SOLUTIONS FOR A HIGHER-ORDER NONLINEAR SCHRODINGER-EQUATION
    FLORJANCZYK, M
    GAGNON, L
    [J]. PHYSICAL REVIEW A, 1990, 41 (08): : 4478 - 4485