The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China

被引:82
|
作者
Feng, Junlan [1 ]
Zhang, Yan [1 ,2 ,3 ]
Li, Shanshan [1 ]
Mao, Jingbo [1 ]
Patton, Allison P. [4 ]
Zhou, Yuyan [1 ]
Ma, Weichun [1 ,3 ]
Liu, Cong [5 ]
Kan, Haidong [5 ]
Huang, Cheng [6 ]
An, Jingyu [6 ]
Li, Li [6 ]
Shen, Yin [7 ]
Fu, Qingyan [7 ]
Wang, Xinning [7 ]
Liu, Juan [7 ]
Wang, Shuxiao [8 ]
Ding, Dian [8 ]
Cheng, Jie [9 ]
Ge, Wangqi [9 ]
Zhu, Hong [9 ]
Walker, Katherine [4 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200438, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R China
[3] SIEC, Shanghai 200062, Peoples R China
[4] Hlth Effects Inst, 75 Fed St,Suite 1400, Boston, MA 02110 USA
[5] Fudan Univ, Sch Publ Hlth, Shanghai 200032, Peoples R China
[6] Shanghai Acad Environm Sci, Shanghai 200233, Peoples R China
[7] Shanghai Environm Monitoring Ctr, Shanghai 200030, Peoples R China
[8] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[9] Shanghai Urban Rural Construct & Transportat Dev, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
OCEAN-GOING VESSELS; EXHAUST EMISSIONS; POLLUTION; CLIMATE; IMPACT; HEALTH; URBAN; DELTA; SEA; INVENTORY;
D O I
10.5194/acp-19-6167-2019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Yangtze River Delta (YRD) and the megacity of Shanghai are host to one of the busiest port clusters in the world; the region also suffers from high levels of air pollution. The goal of this study was to estimate the contributions of shipping to regional emissions, air quality, and population exposure and to characterize the importance of the geographic spatiality of shipping lanes and different types of ship-related sources for the baseline year of 2015, which was prior to the implementation of China's Domestic Emission Control Areas (DECAs) in 2016. The WRF-CMAQ model, which combines the Weather Research and Forecasting model (WRF) and the Community Multi-scale Air Quality (CMAQ) model, was used to simulate the influence of coastal and inland-water shipping, port emissions and ship-related cargo transport on air quality and on the population-weighted concentrations (which is a measure of human exposure). Our results showed that the impact of shipping on air quality in the YRD was primarily attributable to shipping emissions within 12 NM (nautical miles) of shore, but emissions coming from the coastal area between 24 and 96 NM still contributed substantially to ship-related PM2.5 concentrations in the YRD. The overall contribution of ships to the PM2.5 concentration in the YRD could reach 4.62 mu g m(-3) in summer when monsoon winds transport shipping emissions onshore. In Shanghai city, inland-water going ships were major contributors (40 %-80 %) to the shipping impact on urban air quality. Given the proximity of inland-water ships to the urban populations of Shanghai, the emissions of inland-water ships contributed more to population-weighted concentrations. These research results provide scientific evidence to inform policies for controlling future shipping emissions; in particular, in the YRD region, expanding the boundary of 12 NM from shore in China's current DECA policy to around 100 NM from shore would include most of shipping emissions affecting air pollutant exposure, and stricter fuel standards could be considered for the ships on inland rivers and other waterways close to residential regions.
引用
收藏
页码:6167 / 6183
页数:17
相关论文
共 50 条
  • [1] Air quality and emissions in the Yangtze River Delta, China
    Li, L.
    Chen, C. H.
    Fu, J. S.
    Huang, C.
    Streets, D. G.
    Huang, H. Y.
    Zhang, G. F.
    Wang, Y. J.
    Jang, C. J.
    Wang, H. L.
    Chen, Y. R.
    Fu, J. M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (04) : 1621 - 1639
  • [2] Impacts of emissions along the lower Yangtze River on air quality and public health in the Yangtze River delta, China
    Sheng, Li
    Qin, Momei
    Li, Lin
    Wang, Chunlu
    Gong, Kangjia
    Liu, Ting
    Li, Jingyi
    Hu, Jianlin
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (06)
  • [3] Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China
    Zhao, Junri
    Zhang, Yan
    Patton, Allison P.
    Ma, Weichun
    Kan, Haidong
    Wu, Libo
    Fung, Freda
    Wang, Shuxiao
    Ding, Dian
    Walker, Katherine
    ENVIRONMENTAL POLLUTION, 2020, 263
  • [4] Air Quality over the Yangtze River Delta during the 2010 Shanghai Expo
    Lin, Yanfen
    Huang, Kan
    Zhuang, Guoshun
    Fu, Joshua S.
    Xu, Chang
    Shen, Jiandong
    Chen, Shuyan
    AEROSOL AND AIR QUALITY RESEARCH, 2013, 13 (06) : 1655 - +
  • [5] Influence of meteorological reanalysis field on air quality modeling in the Yangtze River Delta, China
    Wang, Xueying
    Jiang, Lei
    Guo, Zhaobing
    Xie, Xiaodong
    Li, Lin
    Gong, Kangjia
    Hu, Jianlin
    ATMOSPHERIC ENVIRONMENT, 2024, 318
  • [6] Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China
    Kang, Hanqing
    Zhu, Bin
    Gao, Jinhui
    He, Yao
    Wang, Honglei
    Su, Jifeng
    Pan, Chen
    Zhu, Tong
    Yu, Bu
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (06) : 3673 - 3685
  • [7] Spatiotemporal heterogeneity analysis of air quality in the Yangtze River Delta, China
    Miao, Lizhi
    Liu, Chengliang
    Yang, Xin
    Kwan, Mei-Po
    Zhang, Kai
    SUSTAINABLE CITIES AND SOCIETY, 2022, 78
  • [8] Shipping emissions and their impacts on air quality in China
    Zhang, Yan
    Yang, Xin
    Brown, Richard
    Yang, Liping
    Morawska, Lidia
    Ristovski, Zoran
    Fu, Qingyan
    Huang, Cheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 581 : 186 - 198
  • [9] Impact of COVID-19 on air quality in the Yangtze River Delta, China
    Yao, Lan
    Li, Weiyue
    Du, Yi
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (08)
  • [10] Impact of COVID-19 on air quality in the Yangtze River Delta, China
    Lan Yao
    Weiyue Li
    Yi Du
    Environmental Monitoring and Assessment, 2021, 193