SPATIAL-TEMPORAL GRAPH CONVOLUTION NETWORK FOR MULTICHANNEL SPEECH ENHANCEMENT

被引:4
|
作者
Hao, Minghui [1 ]
Yu, Jingjing [1 ]
Zhang, Luyao [1 ]
机构
[1] Beijing Jiaotong Univ, Elect & Informat Engn, Beijing, Peoples R China
关键词
Graph convolution network; spatial dependency extraction; spatial-temporal convolution module; SII-weighted loss function; speech enhancement;
D O I
10.1109/ICASSP43922.2022.9746054
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Spatial dependency related to distributed microphone positions is essential for multichannel speech enhancement task. It is still challenging due to lack of accurate array positions and complex spatial-temporal relations of multichannel noisy signals This paper proposes a spatial-temporal graph convolutional network composed of cascaded spatial-temporal (ST) modules with channel fusion. Without any prior information of array and acoustic scene, a graph convolution block is designed with learnable adjacency matrix to capture the spatial dependency of pairwise channels. Then, it is embedded with time-frequency convolution block as the ST module to fuse the multi-dimensional correlation features for target speech estimation. Furthermore, a novel weighted loss function based on speech intelligibility index (SII) is proposed to assign more attention for the important bands of human understanding during network training. Our framework is demonstrated to achieve over 11% performance improvement on PESQ and intelligibility against prior state-of-the-art approaches in multi-scene speech enhancement experiments.
引用
收藏
页码:6512 / 6516
页数:5
相关论文
共 50 条
  • [31] STAFGCN: a spatial-temporal attention-based fusion graph convolution network for pedestrian trajectory prediction
    Liu, Guihong
    Pan, Chenying
    Zhang, Xiaoyan
    Leng, Qiangkui
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2025, 73 (01)
  • [32] ST-Tracking: Spatial-temporal Graph Convolution Neural Network for Multi-object Tracking
    Xue, Yaqing
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    Yang, Fangchun
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2958 - 2964
  • [33] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Bai, Dewei
    Xia, Dawen
    Huang, Dan
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30843 - 30864
  • [34] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Dewei Bai
    Dawen Xia
    Dan Huang
    Yang Hu
    Yantao Li
    Huaqing Li
    Applied Intelligence, 2023, 53 : 30843 - 30864
  • [35] Spatial-Temporal Graph Network for Video Crowd Counting
    Wu, Zhe
    Zhang, Xinfeng
    Tian, Geng
    Wang, Yaowei
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 228 - 241
  • [36] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [37] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    arXiv, 2023,
  • [38] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 448 - 458
  • [39] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 448 - 458
  • [40] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16655 - 16668