The classical-quantum divergence of complexity in modelling spin chains

被引:16
|
作者
Suen, Whei Yeap [1 ]
Thompson, Jayne [1 ]
Garner, Andrew J. P. [1 ]
Vedral, Vlatko [1 ,2 ,3 ]
Gu, Mile [1 ,4 ,5 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Univ Oxford, Clarendon Lab, Atom & Laser Phys, Parks Rd, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Dept Phys, 3 Sci Dr 2, Singapore 117543, Singapore
[4] Nanyang Technol Univ, Sch Math & Phys Scieces, Singapore, Singapore
[5] Nanyang Technol Univ, Complex Inst, Singapore, Singapore
来源
QUANTUM | 2017年 / 1卷
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
COMPUTATIONAL MECHANICS; STATISTICAL COMPLEXITY;
D O I
10.22331/q-2017-08-11-25
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The minimal memory required to model a given stochastic process known as the statistical complexity is a widely adopted quantifier of structure in complexity science. Here, we ask if quantum mechanics can fundamentally change the qualitative behaviour of this measure. We study this question in the context of the classical Ising spin chain. In this system, the statistical complexity is known to grow monotonically with temperature. We evaluate the spin chain's quantum mechanical statistical complexity by explicitly constructing its provably simplest quantum model, and demonstrate that this measure exhibits drastically different behaviour: it rises to a maximum at some finite temperature then tends back towards zero for higher temperatures. This demonstrates how complexity, as captured by the amount of memory required to model a process, can exhibit radically different behaviour when quantum processing is allowed.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Implementation of Framework for Quantum-Classical and Classical-Quantum Conversion
    Nimbe P.
    Weyori B.A.
    Adekoya A.F.
    Awarayi N.S.
    [J]. International Journal of Theoretical Physics, 2022, 61 (2)
  • [22] Classical-quantum advantage boundary for enzymes
    McCardle, Kaitlin
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (10): : 620 - 620
  • [23] Moderate Deviations for Classical-Quantum Channels
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 296 - 300
  • [24] Polar Codes for Classical-Quantum Channels
    Wilde, Mark M.
    Guha, Saikat
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1175 - 1187
  • [25] On the Classical-Quantum Relation of Constants of Motion
    Belmonte, Fabian
    Veloz, Tomas
    [J]. FRONTIERS IN PHYSICS, 2018, 6
  • [26] Capacities of Gaussian Classical-Quantum Channels
    Holevo, Alexander S.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 176 - 180
  • [27] Classical capacity of classical-quantum arbitrarily varying channels
    Ahlswede, Rudolf
    Blinovsky, Vladimir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) : 526 - 533
  • [28] THE CLASSICAL-QUANTUM BORDER - LASER SHARP
    BOREHAM, BW
    [J]. PHYSICS TODAY, 1994, 47 (07) : 13 - 13
  • [29] Classical tau-function for quantum spin chains
    Alexandrov, Alexander
    Kazakov, Vladimir
    Leurent, Sebastien
    Tsuboi, Zengo
    Zabrodin, Anton
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [30] Supersymmetric quantum spin chains and classical integrable systems
    Zengo Tsuboi
    Anton Zabrodin
    Andrei Zotov
    [J]. Journal of High Energy Physics, 2015