Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation

被引:15
|
作者
Jiang, Hongsheng [1 ]
Yang, Xinyu [2 ]
Wang, Yanzhou [1 ]
Zhou, Caifeng [1 ]
机构
[1] Cangzhou Cent Hosp, Dept Neurosurg, Cangzhou, Peoples R China
[2] Tianjin Med Univ, Gen Hosp, Dept Neurosurg, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2022/3363036
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Vitamin D (VD) deficiency is associated with neuroinflammation and neurocognitive deficits in patients with traumatic brain injury (TBI). The present study was aimed at investigating the therapeutic effects of VD and the molecular mechanisms after TBI. After the intraperitoneal injection of VD (1 mu g/kg), sensorimotor and cognitive function was assessed via a series of behavioral tests in TBI rats. Traumatic outcomes were investigated by brain edema, blood-brain barrier (BBB) disruption, and morphologic staining. In vitro, cellular viability and cytotoxicity in primary hippocampal neurons were detected via the MTT method and LDH release. Hippocampal oxidative stress-related enzymes and proinflammatory mediators and the serum concentration of VD were analyzed by ELISA. The expression of VDR, TLR4, MyD88, and NF-kappa B p65 was measured by Western blot. Furthermore, the levels of M1/M2 microglial markers were quantified using real-time PCR and Western blot. VD treatment significantly increased the serum level of VD and the hippocampal expression of VDR. VD not only effectively alleviated neurocognitive deficits, brain edema, and BBB disruption but also promoted hippocampal neuronal survival in vivo and in vitro. Moreover, VD therapy prevented excessive neuroinflammation and oxidative stress caused by TBI. Mechanically, the hippocampal expression of TLR4, MyD88, and nuclear NF-kappa B p65 was elevated in the TBI group but robustly restrained by VD treatment. Taken together, VD provides an important neuroprotection through modulating hippocampal microglial M2 polarization and neuroinflammation via the TLR4/MyD88/NF-kappa B pathway.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Gut Dysbiosis Aggravated Hippocampal Neuroinflammation via the TLR4/MyD88/NF-κB Signaling Pathway in Hypoxic-Ischemic Neonatal Rats
    Wei, Jianjie
    Chen, Andi
    Wu, Xuyang
    Chen, Xiaohui
    Zheng, Xiaochun
    ANESTHESIA AND ANALGESIA, 2024, 139 (06):
  • [32] Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats
    Zhou, Jiayin
    Deng, Yuanyuan
    Li, Fei
    Yin, Caixia
    Shi, Jingshan
    Gong, Qihai
    BIOMEDICINE & PHARMACOTHERAPY, 2019, 111 : 315 - 324
  • [33] Astragaloside IV alleviates PM2.5-induced lung injury in rats by modulating TLR4/MyD88/NF-κB signalling pathway
    Wu, Yongcan
    Xiao, Wei
    Pei, Caixia
    Wang, Mingjie
    Wang, Xiaomin
    Huang, Demei
    Wang, Fei
    Wang, Zhenxing
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 91
  • [34] Jinzhen Oral Liquid alleviates lipopolysaccharide-induced acute lung injury through modulating TLR4/MyD88/NF-κB pathway
    Li, Ya-Ling
    Qin, Shu-Yan
    Li, Qian
    Song, Shao-Jiang
    Xiao, Wei
    Yao, Guo-Dong
    PHYTOMEDICINE, 2023, 114
  • [35] TRIM8 regulates contrast-induced renal cell injury via the TLR4/MyD88/NF-κB pathway
    Li, Weigang
    Su, Lili
    Zhang, Jian
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2023, 22 (01) : 23 - 30
  • [36] In vivo and in vitro studies of Danzhi Jiangtang capsules against diabetic cardiomyopathy via TLR4/MyD88/NF-κB signaling pathway
    Shi, Hui
    Zhou, Peng
    Ni, Ying-qun
    Wang, Shu-shu
    Song, Rui
    Shen, An-lu
    Fang, Zhao-hui
    Wang, Liang
    SAUDI PHARMACEUTICAL JOURNAL, 2021, 29 (12) : 1432 - 1440
  • [37] Transcutaneous electrical acupoint stimulation alleviates cerebral ischemic injury through the TLR4/MyD88/NF-κ B pathway
    Wu, Linyu
    Tan, Zixuan
    Su, Lei
    Dong, Fang
    Xu, Guangyu
    Zhang, Feng
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2024, 17
  • [38] Effect of dexmedetomidine on kidney injury in sepsis rats through TLR4/MyD88/NF-κB/iNOS signaling pathway
    Jin, Y-H
    Li, Z-T
    Chen, H.
    Jiang, X-Q
    Zhang, Y-Y
    Wu, F.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (11) : 5020 - 5025
  • [39] Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway
    Jian Hu
    Xue Wang
    Xiongjian Chen
    Yani Fang
    Kun Chen
    Wenshuo Peng
    Zhengyi Wang
    Kaiming Guo
    Xianxi Tan
    Fei Liang
    Li Lin
    Ye Xiong
    Journal of Neuroinflammation, 19
  • [40] Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway
    Hu, Jian
    Wang, Xue
    Chen, Xiongjian
    Fang, Yani
    Chen, Kun
    Peng, Wenshuo
    Wang, Zhengyi
    Guo, Kaiming
    Tan, Xianxi
    Liang, Fei
    Lin, Li
    Xiong, Ye
    JOURNAL OF NEUROINFLAMMATION, 2022, 19 (01)