3D printed microfluidic circuitry via multijet-based additive manufacturing

被引:179
|
作者
Sochol, R. D. [1 ,2 ,3 ,4 ,10 ]
Sweet, E. [1 ,2 ]
Glick, C. C. [2 ,5 ]
Venkatesh, S. [1 ,2 ]
Avetisyan, A. [6 ]
Ekman, K. F. [1 ,2 ]
Raulinaitis, A. [1 ,2 ]
Tsai, A. [2 ,7 ]
Wienkers, A. [1 ,2 ]
Korner, K. [1 ,2 ]
Hanson, K. [2 ,7 ]
Long, A. [2 ,7 ]
Hightower, B. J. [1 ,2 ,8 ]
Slatton, G. [1 ,2 ]
Burnett, D. C. [2 ,9 ]
Massey, T. L. [2 ,9 ]
Iwai, K. [1 ,2 ]
Lee, L. P. [2 ,7 ]
Pister, K. S. J. [2 ,9 ]
Lin, L. [1 ,2 ,11 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[2] Berkeley Sensor & Actuator Ctr, Arlington, VA 22230 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[4] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Swiss Fed Inst Technol, Dept Proc Engn, Zurich, Switzerland
[7] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[8] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[9] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[10] Univ Maryland, 2147 Glenn L Martin Hall,Bldg 088, College Pk, MD 20742 USA
[11] Univ Calif Berkeley, 621E Sutardja Dai Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
MULTILAYER SOFT LITHOGRAPHY; MICROVASCULAR NETWORKS; DEVICES; TISSUES; SYSTEMS; FUTURE; ORGANS; VALVES; LOGIC;
D O I
10.1039/c5lc01389e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or "three-dimensional (3D) printing" technologies - predominantly stereolithography - as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) - a layer-by-layer, multi-material inkjetting process - for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 +/- 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 +/- 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community.
引用
收藏
页码:668 / 678
页数:11
相关论文
共 50 条
  • [21] 3D Ceramic Microfluidic Device Manufacturing
    Natarajan, Govindarajan
    Humenik, James N.
    [J]. INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 : 533 - 539
  • [22] 3D & Printed Electronics Manufacturing Strategies
    Bailey, C.
    Stoyanov, S.
    Tilford, T.
    Tourloukis, G.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP), 2017, : 312 - 315
  • [23] Inclusive characterization of 3D printed concrete (3DPC) in additive manufacturing: A detailed review
    Riaz, Raja Dilawar
    Usman, Muhammad
    Ali, Ammar
    Majid, Usama
    Faizan, Muhammad
    Malik, Umair Jalil
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2023, 394
  • [24] Manufacturing of 3D Printed Sports Helmet
    Raykar, Sunil J.
    Narke, Mahadeo M.
    Desai, Sudhir B.
    Warke, Shubhada S.
    [J]. TECHNO-SOCIETAL 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SOCIETAL APPLICATIONS - VOL 2, 2020, : 771 - 778
  • [25] A 3D printed flow sensor for microfluidic applications
    Hawke, Adam
    Concilia, Gianmarco
    Thurgood, Peter
    Ahnood, Arman
    Baratchi, Sara
    Khoshmanesh, Khashayar
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2023, 362
  • [26] Photogrammetric measurements of 3D printed microfluidic devices
    Guerra, M. G.
    Volpone, C.
    Galantucci, L. M.
    Percoco, G.
    [J]. ADDITIVE MANUFACTURING, 2018, 21 : 53 - 62
  • [27] 3D printed microfluidic devices with integrated valves
    Rogers, Chad I.
    Qaderi, Kamran
    Woolley, Adam T.
    Nordin, Gregory P.
    [J]. BIOMICROFLUIDICS, 2015, 9 (01):
  • [28] 3D printed microfluidic devices: enablers and barriers
    Waheed, Sidra
    Cabot, Joan M.
    Macdonald, Niall P.
    Lewis, Trevor
    Guijt, Rosanne M.
    Paull, Brett
    Breadmore, Michael C.
    [J]. LAB ON A CHIP, 2016, 16 (11) : 1993 - 2013
  • [29] 3D printed modules for integrated microfluidic devices
    Lee, Kyoung G.
    Park, Kyun Joo
    Seok, Seunghwan
    Shin, Sujeong
    Kim, Do Hyun
    Park, Jung Youn
    Heo, Yun Seok
    Lee, Seok Jae
    Lee, Tae Jae
    [J]. RSC ADVANCES, 2014, 4 (62): : 32876 - 32880
  • [30] Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications
    Cesewski, Ellen
    Haring, Alexander P.
    Tong, Yuxin
    Singh, Manjot
    Thakur, Rajan
    Laheri, Sahil
    Read, Kaitlin A.
    Powell, Michael D.
    Oestreich, Kenneth J.
    Johnson, Blake N.
    [J]. LAB ON A CHIP, 2018, 18 (14) : 2087 - 2098