3D printed microfluidic circuitry via multijet-based additive manufacturing

被引:179
|
作者
Sochol, R. D. [1 ,2 ,3 ,4 ,10 ]
Sweet, E. [1 ,2 ]
Glick, C. C. [2 ,5 ]
Venkatesh, S. [1 ,2 ]
Avetisyan, A. [6 ]
Ekman, K. F. [1 ,2 ]
Raulinaitis, A. [1 ,2 ]
Tsai, A. [2 ,7 ]
Wienkers, A. [1 ,2 ]
Korner, K. [1 ,2 ]
Hanson, K. [2 ,7 ]
Long, A. [2 ,7 ]
Hightower, B. J. [1 ,2 ,8 ]
Slatton, G. [1 ,2 ]
Burnett, D. C. [2 ,9 ]
Massey, T. L. [2 ,9 ]
Iwai, K. [1 ,2 ]
Lee, L. P. [2 ,7 ]
Pister, K. S. J. [2 ,9 ]
Lin, L. [1 ,2 ,11 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[2] Berkeley Sensor & Actuator Ctr, Arlington, VA 22230 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[4] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Swiss Fed Inst Technol, Dept Proc Engn, Zurich, Switzerland
[7] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[8] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[9] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[10] Univ Maryland, 2147 Glenn L Martin Hall,Bldg 088, College Pk, MD 20742 USA
[11] Univ Calif Berkeley, 621E Sutardja Dai Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
MULTILAYER SOFT LITHOGRAPHY; MICROVASCULAR NETWORKS; DEVICES; TISSUES; SYSTEMS; FUTURE; ORGANS; VALVES; LOGIC;
D O I
10.1039/c5lc01389e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or "three-dimensional (3D) printing" technologies - predominantly stereolithography - as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) - a layer-by-layer, multi-material inkjetting process - for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 +/- 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 +/- 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community.
引用
收藏
页码:668 / 678
页数:11
相关论文
共 50 条
  • [1] Hybrid Additive Manufacturing Method for Selective Plating of Freeform Circuitry on 3D Printed Plastic Structure
    Li, Ji
    Wang, Yang
    Xiang, Gengzhao
    Liu, Handa
    He, Jiangling
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (02):
  • [2] Additive manufacturing: 3D printed lasts from the configurator
    Ohms, Mona
    [J]. Konstruktion, 2021, 2021 (10):
  • [4] Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing
    Alsharhan, Abdullah T.
    Young, Olivia
    Xu, Xin
    Stair, Anthony J.
    Sochol, Ryan D.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (04)
  • [5] Sequential additive manufacturing: automatic manipulation of 3D printed parts
    Aroca, Rafael Vidal
    Ventura, Carlos E. H.
    De Mello, Igor
    Pazelli, Tatiana F. P. A. T.
    [J]. RAPID PROTOTYPING JOURNAL, 2017, 23 (04) : 653 - 659
  • [6] 3D printed tissue and organ using additive manufacturing: An overview
    Javaid, Mohd
    Haleem, Abid
    [J]. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH, 2020, 8 (02): : 586 - 594
  • [7] Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics
    Varghese, Tony Valayil
    Eixenberger, Josh
    Rajabi-Kouchi, Fereshteh
    Lazouskaya, Maryna
    Francis, Cadre
    Burgoyne, Hailey
    Wada, Katelyn
    Subbaraman, Harish
    Estrada, David
    [J]. ACS MATERIALS AU, 2023, 4 (01): : 65 - 73
  • [8] 3D Printed Microfluidic Probes
    Ayoola Brimmo
    Pierre-Alexandre Goyette
    Roaa Alnemari
    Thomas Gervais
    Mohammad A. Qasaimeh
    [J]. Scientific Reports, 8
  • [9] 3D Printed Microfluidic Probes
    Brimmo, Ayoola
    Goyette, Pierre-Alexandre
    Alnemari, Roaa
    Gervais, Thomas
    Qasaimeh, Mohammad A.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] 3D printed medical parts with different materials using additive manufacturing
    Haleem, Abid
    Javaid, Mohd
    [J]. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH, 2020, 8 (01): : 215 - 223