OPTIMALITY OF REFRACTION STRATEGIES FOR A CONSTRAINED DIVIDEND PROBLEM

被引:2
|
作者
Junca, Mauricio [1 ]
Moreno-Franco, Harold A. [2 ,3 ]
Luis Perez, Jose [4 ,5 ]
Yamazaki, Kazutoshi [6 ]
机构
[1] Univ Andes, Dept Math, Carrera 1 18A-12 CP 11711, Bogota, Colombia
[2] Univ Norte, Dept Math & Stat, Km 5 Via Puerto Colombia,CP 080003, Barranquilla, Colombia
[3] HSE Univ, Moscow, Russia
[4] Ctr Invest Matemat, Guanajuato, Mexico
[5] Ctr Invest Matemat AC, Dept Probabil & Stat, Calle Jalisco S-N,CP 36240, Guanajuato, Mexico
[6] Kansai Univ, Fac Engn Sci, Dept Math, 3-3-35 Yamate Cho, Suita, Osaka 5648680, Japan
关键词
Dividend payment; optimal control; ruin time constraint; spectrally one-sided Levy process; refracted Levy process; scale function; SCALE FUNCTIONS; TIME;
D O I
10.1017/apr.2019.32
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider de Finetti's problem for spectrally one-sided Levy risk models with control strategies that are absolutely continuous with respect to the Lebesgue measure. Furthermore, we consider the version with a constraint on the time of ruin. To characterize the solution to the aforementioned models, we first solve the optimal dividend problem with a terminal value at ruin and show the optimality of threshold strategies. Next, we introduce the dual Lagrangian problem and show that the complementary slackness conditions are satisfied, characterizing the optimal Lagrange multiplier. Finally, we illustrate our findings with a series of numerical examples.
引用
下载
收藏
页码:633 / 666
页数:34
相关论文
共 50 条