OPTIMALITY OF REFRACTION STRATEGIES FOR A CONSTRAINED DIVIDEND PROBLEM

被引:2
|
作者
Junca, Mauricio [1 ]
Moreno-Franco, Harold A. [2 ,3 ]
Luis Perez, Jose [4 ,5 ]
Yamazaki, Kazutoshi [6 ]
机构
[1] Univ Andes, Dept Math, Carrera 1 18A-12 CP 11711, Bogota, Colombia
[2] Univ Norte, Dept Math & Stat, Km 5 Via Puerto Colombia,CP 080003, Barranquilla, Colombia
[3] HSE Univ, Moscow, Russia
[4] Ctr Invest Matemat, Guanajuato, Mexico
[5] Ctr Invest Matemat AC, Dept Probabil & Stat, Calle Jalisco S-N,CP 36240, Guanajuato, Mexico
[6] Kansai Univ, Fac Engn Sci, Dept Math, 3-3-35 Yamate Cho, Suita, Osaka 5648680, Japan
关键词
Dividend payment; optimal control; ruin time constraint; spectrally one-sided Levy process; refracted Levy process; scale function; SCALE FUNCTIONS; TIME;
D O I
10.1017/apr.2019.32
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider de Finetti's problem for spectrally one-sided Levy risk models with control strategies that are absolutely continuous with respect to the Lebesgue measure. Furthermore, we consider the version with a constraint on the time of ruin. To characterize the solution to the aforementioned models, we first solve the optimal dividend problem with a terminal value at ruin and show the optimality of threshold strategies. Next, we introduce the dual Lagrangian problem and show that the complementary slackness conditions are satisfied, characterizing the optimal Lagrange multiplier. Finally, we illustrate our findings with a series of numerical examples.
引用
下载
收藏
页码:633 / 666
页数:34
相关论文
共 50 条
  • [1] On the optimality of joint periodic and extraordinary dividend strategies
    Avanzi, Benjamin
    Lau, Hayden
    Wong, Bernard
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 295 (03) : 1189 - 1210
  • [2] Optimality conditions for a constrained control problem
    Stefani, G
    Zezza, P
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (02) : 635 - 659
  • [3] OPTIMALITY OF REFRACTION STRATEGIES FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Hernandez-Hernandez, Daniel
    Perez, Jose-Luis
    Yamazaki, Kazutoshi
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (03) : 1126 - 1156
  • [4] On the optimality of the refraction-reflection strategies for L?vy processes
    Noba, Kei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 160 : 174 - 217
  • [5] Optimality of multi-refraction control strategies in the dual model
    Czarna, Irmina
    Perez, Jose-Luis
    Yamazaki, Kazutoshi
    INSURANCE MATHEMATICS & ECONOMICS, 2018, 83 : 148 - 160
  • [6] Optimality results for dividend problems in insurance
    Albrecher, Hansjoerg
    Thonhauser, Stefan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2009, 103 (02) : 295 - 320
  • [7] Optimality Conditions for Multiobjective Optimization Problem Constrained by Parameterized Variational Inequalities
    Li-Ping Pang
    Fan-Yun Meng
    Shuang Chen
    Dan Li
    Set-Valued and Variational Analysis, 2014, 22 : 285 - 298
  • [8] Optimality Conditions for Multiobjective Optimization Problem Constrained by Parameterized Variational Inequalities
    Pang, Li-Ping
    Meng, Fan-Yun
    Chen, Shuang
    Li, Dan
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (02) : 285 - 298
  • [9] ON OPTIMALITY OF THE BARRIER STRATEGY IN DE FINETTI'S DIVIDEND PROBLEM FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Loeffen, R. L.
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (05): : 1669 - 1680
  • [10] The Cass criterion, the net dividend criterion, and optimality
    Chattopadhyay, Subir
    JOURNAL OF ECONOMIC THEORY, 2008, 139 (01) : 335 - 352