On the existence and convergence of approximate solutions for mixed variational-like inequalities

被引:4
|
作者
Schaible, S.
Yao, J. C. [1 ]
Zeng, L. C.
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Univ Calif Riverside, AG Anderson Grad Sch Management, Riverside, CA 92521 USA
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
关键词
auxiliary principle technique; convergence; existence; mixed variational-like inequality;
D O I
10.1080/02331930600808483
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The auxiliary principle technique is extended to develop an iterative algorithm for finding approximate solutions of a mixed variational-like inequality in a real Hilbert space. Not only the existence of approximate solutions of a mixed variational-like inequality is proven, but also the strong convergence of approximate solutions to an exact solution of a mixed variational-like inequality is shown. The convergence criteria presented in this article are new.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 50 条
  • [41] GENERALIZED MIXED VARIATIONAL-LIKE INEQUALITIES WITH COMPOSITELY PSEUDOMONOTONE MULTIFUNCTIONS
    Ceng, L. -C.
    Ansari, Q. H.
    Yao, J. -C.
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (03): : 477 - 491
  • [42] Extended Perturbed Mixed Variational-Like Inequalities for Fuzzy Mappings
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Ab Ghani, Ahmad Termimi
    Abdullah, Lazim
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [43] Algorithm of solutions for mixed-non-linear variational-like inequalities in reflexive Banach space
    Ding, XP
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (06) : 521 - 529
  • [44] Existence of Solutions for [inline-graphic not available: see fulltext]-Generalized Vector Variational-Like Inequalities
    Xi Li
    JongKyu Kim
    Nan-Jing Huang
    [J]. Journal of Inequalities and Applications, 2010
  • [45] EXISTENCE AND ALGORITHM OF SOLUTIONS FOR GENERALIZED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES
    Liu, Zeqing
    Guan, Hongyan
    Shim, Soo Hak
    Kang, Shin Min
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (04): : 709 - 721
  • [46] Vector optimization and variational-like inequalities
    Rezaie, M.
    Zafarani, J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (01) : 47 - 66
  • [47] Generalized vector variational-like inequalities
    Jabarootian, T.
    Zafarani, J.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 136 (01) : 15 - 30
  • [49] Solvability conditions for variational-like inequalities
    Shamray N.B.
    [J]. Cybernetics and Systems Analysis, 2008, 44 (6) : 816 - 821
  • [50] Generalized Vector Variational-Like Inequalities
    Rezaei, M.
    Gazor, H.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2010, 5 (01) : 75 - 86